Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T16:49:49.272Z Has data issue: false hasContentIssue false

Electronic and structural properties of poly-(3-octylthiophene) and graphitic nanoparticle blends*

Published online by Cambridge University Press:  17 January 2007

A. Urbina*
Affiliation:
Dep. de Electrónica, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain
E. Palacios-Lidón
Affiliation:
Dep. de Física, Universidad de Murcia, 30100 Murcia, Spain
C. Miguel
Affiliation:
Dep. de Electrónica, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain
B. Pérez-García
Affiliation:
Dep. de Física, Universidad de Murcia, 30100 Murcia, Spain
R. García-Valverde
Affiliation:
Dep. de Electrónica, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain
J. Abellán
Affiliation:
Dep. de Física, Universidad de Murcia, 30100 Murcia, Spain
J. Colchero
Affiliation:
Dep. de Física, Universidad de Murcia, 30100 Murcia, Spain
Get access

Abstract

We have studied blends of poly-(3-octylthiophene) (P3OT) and graphitic nanoparticles by macroscopic transport measurements, Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and Scanning Force Microscopy (SFM) techniques. Their morphology as well as their mechanical and electrical properties have been characterized on a nanometer scale as a function of the carbon nanoparticle concentration in the blend. For intermediate concentrations (5–10% wt. of carbon nanoparticles) the samples present regions of pure poly-(3-octylthiophene) and round regions of polymer and carbon nanoparticles mixture, while for higher concentrations (>15% wt.) the whole sample is composed of this mixture. The interface between both regions is studied by Electrostatic Scanning Force Microscopy as a function of the applied tip-sample voltage finding evidence for the creation of new electronic states at the heterojunction. TEM images show crystalline domains of P3OT surrounded by amorphous regions. XRD measurements show that the crystallinity of the polymer increases when carbon nanoparticle concentration increases. The potential of this blends to improve the performance of organic solar cells when used as active layer is discussed.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper has been presented at “ECHOS06”, Paris, 28–30 juin 2006.

References

Yu, G., Gao, J., Hummelen, J., Wudl, F., Heeger, A.J., Science 270, 1789 (1995)
Ma, W., Yang, C., Gong, X., Lee, K., Heeger, A.J., Adv. Funct. Mater. 15, 1617 (2005) CrossRef
Brabec, C.J., Sariciftci, N.S., Hummelen, J.H., Adv. Funct. Mater. 11, 15 (2001) 3.0.CO;2-A>CrossRef
Tuladhar, S.M., Poplavskyy, D., Choulis, S.A., Durrant, J.R., Bradley, D.D.C., Nelson, J., Adv. Funct. Mater. 15, 1171 (2005) CrossRef
Echeverría, I., Urbina, A., Eur. Phys. J. B 50, 491 (2006) CrossRef
Prosa, T.J., Winokur, M., Moulton, J., Smith, P., Heegert, A.J., Macromolecules 25, 4364 (1992) CrossRef
Schoenenberger, C., Alvarado, S.F., Phys. Rev. Lett. 65, 3162 (1990) CrossRef
Colchero, J., Gil, A., Baró, A.M., Phys. Rev. B 64, 245403 (2001) CrossRef
Palacios-Lidón, E., Abellán, J.F., Munuera, C., Ocal, C., Colchero, J., Appl. Phys. Lett. 87, 154106 (2005) CrossRef