Hypotheses as to the pathogenesis of schizophrenia can be discussed at different levels of a possible manifestation of the causative factor: the macroscopic-morphological, the microscopic-morphological, and the molecular. Some abnormalities have been observed on all of them: e.g. increased ventricular-brain ratios in CT, hypofrontality in SPECT and in glucographic PET-scans, and other macromorphological abnormalities (for reviews cf. Bogerts 1984; Mundt, 1986; Bogerts et al, 1987), gliosis on a microscopic level (Stevens, 1982), and an increased dopamine-binding in in vivo receptor studies (PET as well as in post-mortem studies; Cazzullo, 1988). However, the diversity and variability of these findings point to the view that rather than there being a single distinct pathogenetic factor responsible for the pathogenesis of schizophrenic psychoses, a constitutional disposition exists, which can be described as a functional dysequilibrium within the human brain. From this point of view, schizophrenia would not appear as an inherited disorder of metabolism, but as a weakness of a neurobiological ‘system’, i.e. as an interactional disorder of a complex of networks, in which the interaction between different substructures is labile in such a way that under special conditions (e.g. ‘stress’), a decompensation (functional breakdown) results. In this sense, ‘vulnerability’ to schizophrenia may be interpreted as a consequence of a constitutional deficiency of the brain which results in an inability to stabilise, under specially challenging conditions, the interaction between different substructures of the human brain. Before this ‘functional dysequilibrium-hypothesis’ (which is a special form of a constitutional structural deficiency-hypothesis) is discussed, and before the question is raised as to which are the relevant dysequilibrated components, some indication will be given as to why such an hypothesis appears plausible.