Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T07:27:41.312Z Has data issue: false hasContentIssue false

Recent Measurements of the Cosmic Microwave Radiation

Published online by Cambridge University Press:  03 August 2017

David T. Wilkinson*
Affiliation:
Joseph Henry Laboratories, Princeton University, P. O. Box 708, Princeton, N J 08544 USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent measurements of the spectrum and anisotropy of the cosmic microwave may be showing deviations from a perfectly homogeneous blackbody flux. Improved spectral measurements at wavelengths of 3 cm and 1.2 cm disagree weakly; and new results from a rocket show large excess flux at wavelengths of 0.71 and 0.48 mm. The same instrument measured a radiation temperature at λ = 1.16 mm of 2.795 ± 0.018 K in good agreement with results at longer wavelengths. The observed excess flux at short wavelengths may be due to: local contaminants; dust emission from active galaxies at high redshift; or inverse Compton scattering of microwave photons from hot electrons at large redshift (Sunyaev-Zel'dovich effect). Anisotropy of ΔT/T = 3.7 × 10−5 has been reported on an angular scale of 8° at a wavelength of 3 cm. Measurements on a similar angular scale at λ = 6 cm (reported at this meeting) do not show the anisotropy at the flux level expected if Galactic emission were the source of the anisotropy at λ = 3 cm. The standard model has not yet predicted anisotropy this large at 8°, but without doubt it soon will. Long integrations with the Very Large Array at λ = 6 cm are showing resolved structures on angular scales of 15 to 30 arcseconds. Observations at another wavelength are needed to see if these are radio sources at high redshift or perturbations in the 2.77 K radiatoin.

Type
Research Article
Copyright
Copyright © Reidel 1988 

References

1. Wilkinson, D. T., 13th Texas Symposium on Relativistic Astrophysics, Ed. Ulmer, M. P. (World Scientific, Singapore, 1987) p. 209.Google Scholar
2. Sironi, G., Bersanelli, M., Bonelli, G., Conti, G., Marcellino, G., Limon, M., and Reif, K., 13th Texas Symposium on Relativitic Astrophysics, Ed. Ulmer, M. P. (World Scientific, Singapore, 1987) p. 245.Google Scholar
3. Smoot, G. F., Bensadoun, M., Bersanelli, M., De Amici, G., Kogut, A., Levin, S., and Witebsky, C., Ap. J. Letters 317, L45 (1987).Google Scholar
4. Sironi, G. and Bonelli, G., Ap. J. 311, 418 (1986).Google Scholar
5. Mandolesi, N., Calzolari, P., Coriglioni, S., Morigi, G., Danese, L., and De Zotti, G., Ap. J. 310 561 (1986).Google Scholar
6. Johnson, D. G. and Wilkinson, D. T., Ap. J. Letters 313, L1 (1987).CrossRefGoogle Scholar
7. De Amici, G., Smoot, G., Friedman, S. D., and Witebsky, C., Ap. J. 298, 710 (1985).CrossRefGoogle Scholar
8. Meyer, D. M. and Jura, M., Ap. J. 297, 119 (1985).Google Scholar
9. Crane, P., Hegyi, D. J., Mandolesi, N., and Danks, A. C., Ap. J. 309, 822 (1986).Google Scholar
10. Peterson, J. B., Richards, P. L., and Timusk, T., Phys. Rev. Letters 55, 332 (1985).Google Scholar
11. Matsumoto, T., Hayakawa, S., Matsuo, H., Murakami, H., Sato, S., Lange, A. E., and Richards, P. L., submitted to Ap. J. Letters (8/87).Google Scholar
12. Danese, L. and De Zotti, G. F., Riv. Nuovo Cimento 7, 277 (1977); Astr. Ap. 84, 364 (1980).Google Scholar
13. Reviewed by Weiss, R., Ann. Rev. Astron. Astrophys. 18, 489 (1980).Google Scholar
14. Woody, D. P. and Richards, P. L., Ap. J. 248, 18 (1981).Google Scholar
15. Johnson, D. G. and Wilkinson, D. T., “A 1% Measurement of the Temperature of the Cosmic Microwave Radiation at λ = 1.2 cm: Experimental Details”, Appendix B. In preparation.Google Scholar
16. Zel'dovich, Ya. B. and Sunyaev, R. A., Ap. Space Sci. 4, 302 (1969).Google Scholar
17. Knoke, J. E., Partridge, R. B., Ratner, M. I., Shapiro, I. I., Ap. J. 284, 479 (1984). Fomalont, E. B., Kellerman, K. I., and Wall, J. V., Ap. J. Letters 277, L23 (1984).Google Scholar
18. Fomalont, E. B., ΔT over Tea Conference, C.I.T.A. Toronto, May 1987.Google Scholar
19. Uson, J. M. and Wilkinson, D. T., Ap. J. 283, 471 (1984); Nature 312, 427 (1985).Google Scholar
20. Lasenby, A. N. and Kaiser, N. preprint, 1987. Boughn, S. P. and Cottingham, D. C., “On Comparing Observations with Models of Fluctuations of the Microwave Background”, Preprint distributed at ΔT over Tea Conference, C.I.T.A. Toronto, May 1987.Google Scholar
21. Readhead, A. and Lawrence, C., ΔT over Tea Conference, C.I.T.A. Toronto, May 1987. Sargent, W., paper at this Symposium.Google Scholar
22. Partridge, R. B., Physica Scripta 21, 624 (1980). Lasenby, A. N. and Davis, R. D., M.N.R.A.S. 203, 1137 (1983).Google Scholar
23. Parijskij, Yu. N., Petrov, Z. E., and Cherkov, L. N., Sov. Astr. Letters 3, 263 (1977). Berlin, A. B., Bulaenkov, E. V., Vitkovsky, V. V., Kononov, V. K., Parijskij, Yu. N. and Petrov, Z. E., Early Evolution of the Universe and Its Present Structure, IAU Symp. 104, Eds. Abell, and Chincarini, , p. 121 (1983).Google Scholar
24. Parijskij, Yu. N. and Korol'kov, D. V., Sov. Sci. Rev. E Astrophys. Space Phys. 5, 39 (1986).Google Scholar
25. Caderni, N., De Cosmo, V., Fabbri, R., Melchiorri, B., Melchiorri, F., and Natale, V., Phys. Rev. D16, 2424 (1977). Melchiorri, F., Melchiorri, B., Ceccarelli, C., and Pietranera, L., Ap. J. Letters 250, L1 (1981).Google Scholar
26. Davies, R. D., Watson, R., Daintree, E. J., Hopkins, J., Lasenby, A. N., Beckman, J., Sanchez-Almeida, J., and Rebolo, R., Nature 326, 462 (1987).Google Scholar
27. Davies, R. D. and Lasenby, A. N., 13th Texas Symposium on Relativistic Astrophysics, Ed. Ulmer, M. P. (World Scientific, Singapore, 1987) p. 224.Google Scholar
28. Strukov, I. A., Skulachev, D. P., and Klypin, A. A., “The Anisotropy of the Microwave Background: Space Experiment Relikt”, preprint distributed at this meeting.Google Scholar