Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T19:20:53.140Z Has data issue: false hasContentIssue false

On the Theory of the Galilean Satellites of Jupiter

Published online by Cambridge University Press:  14 August 2015

S. Ferraz-Mello*
Affiliation:
Aeronautics Institute of Technology, Astronomical Observatory, 12200 São José dos Campos, Brazil

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this communication the main equations for the variables: radius vector, longitude, P and Q (variables built from Laplace's perihelium first integral) are given in closed form. These equations are used for deriving the equations of a second-order theory. At this order, the equations for P and Q, are separated and they are integrodifferential linear equations. The equations for the radius vector and for the longitudes, give, after integration, perturbations which are purely trigonometric. The solution shows the features observed in the motion of Jupiter's Galilean satellites. The results are discussed, and extended to include the space variables.

Type
Research Article
Copyright
Copyright © Reidel 1974 

References

Brouwer, D.: 1959, Proc. Symp. Appl. Math. , Vol. 9, Orbit Theory , Am. Math. Soc., Providence, p. 152.CrossRefGoogle Scholar
Brumberg, V. A.: 1970, in Giacaglia, G. E. O. (ed.), Periodic Orbits, Stability and Resonances , D. Reidel, Dordrecht, The Netherlands, p. 410.CrossRefGoogle Scholar
De Sitter, W.: 1918, Ann. Sterrew. Leiden 12 (1).Google Scholar
Ferraz-Mello, S.: 1966, Bull. Astron. , 3e série, 1, 287.Google Scholar
Ferraz-Mello, S.: 1969a, Compt. Rend. Acad. Sci. Paris 268, 198.Google Scholar
Ferraz-Mello, S.: 1969b, Compt. Rend. Acad. Sci. Paris 268, 985.Google Scholar
Ferraz-Mello, S. and Paula, L. R.: 1973 (to be published).Google Scholar
Hagihara, Y.: 1972, Celestial Mechanics , Vol. 2, Perturbation Theory , MIT Press, Cambridge, Mass. Google Scholar
Kovalevsky, J.: 1962, Trans. IAU 11B, 455.Google Scholar
Krasinsky, G. A.: 1968, Soviet Math. Dokl. 9, 641.Google Scholar
Krasinsky, G. A.: 1969, Trudy Inst. Teoret. Astron. 13, 105.Google Scholar
Kurth, R.: 1959, Introduction to the Mechanics of the Solar System , Pergamon Press, London.Google Scholar
Rodrigues, C. M.: 1970, M. Sc. Thesis, Inst. Tecnol. Aer., São José dos Campos, Brazil.Google Scholar
Sagnier, J. L.: 1973a, Astron. Astrophys. 25, 113.Google Scholar
Sagnier, J. L.: 1973b, Astron. Astrophys. (in press).Google Scholar
Sampson, R. A.: 1910, Tables of the Four Great Satellites of Jupiter , Wesley, London.Google Scholar
Tisserand, F.: 1868, J. Math. Pures Appl. , ser. 2, 13, 255.Google Scholar
Tisserand, F.: 1896, Traité de mécanique céleste , Vol. 4, Gauthier-Villars, Paris.Google Scholar