Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T14:31:58.024Z Has data issue: false hasContentIssue false

Different Prevention and Treatment Strategies for Knee Osteoarthritis (KOA) with Various Lower Limb Exoskeletons – A Comprehensive Review

Published online by Cambridge University Press:  13 January 2021

Xin Zhou
Affiliation:
Shaanxi Engineering Laboratory for Transmissions and Controls, Northwest Polytechnical University, Xi ’an 710072, P. R. China School of Mechanical Engineering, Xi’an Aeronautical University, Xi’an, 710077, P.R. China
Geng Liu
Affiliation:
Shaanxi Engineering Laboratory for Transmissions and Controls, Northwest Polytechnical University, Xi ’an 710072, P. R. China
Bing Han
Affiliation:
Shaanxi Engineering Laboratory for Transmissions and Controls, Northwest Polytechnical University, Xi ’an 710072, P. R. China
Hui Li
Affiliation:
Hong-Hui hospital, Xi’an Jiaotong University College of Medicine, Xi’an710054, P.R.China
Li Zhang
Affiliation:
Shaanxi Engineering Laboratory for Transmissions and Controls, Northwest Polytechnical University, Xi ’an 710072, P. R. China
Xiaoli Liu*
Affiliation:
Xi’an Children’s Hospital, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an710003, P. R. China
*
*Corresponding author. E-mail: [email protected]

Summary

It was reported that about 10% of people suffer from painful knee arthritis, and a quarter of them were severely disabled. The core activities of daily living were severely limited by knee osteoarthritis (KOA). In order to reduce knee pain and prolong the life of the knee joint, there has been an increasing demand on the development of exoskeletons, for prevention and treatment. The course of KOA was closely related to the biomechanics of knee joint, and the pathogenesis was summarized based on the biomechanics of knee joint. For the prevention and clinical treatment, exoskeletons are classified into three categories: prevention, treatment, and rehabilitation after the operation. Furthermore, the design concepts, actuators, sensors, control strategies, and evaluation criteria were presented. Finally, the shortcomings and limitations were summarized. It is useful for researchers to develop suitable exoskeletons in the future.

Type
Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Peat, G., Mccarney, R. and Croft, P.. “Knee pain and osteoarthritis in older adults: A review of community burden and current use of primary health care,” ’Ann. Rheum. Dis. 60(2), 9197 (2001).CrossRefGoogle ScholarPubMed
Grazio, S. and Balen, D.. “Obesity: Risk factor and predictor of osteoarthritis,” Lijec Vjesn 131(1–2), 22 (2009).Google ScholarPubMed
Barreca, S., Wolf, S. L., Fasoli, S. and Bohannon, R., “Treatment interventions for the paretic upper limb of stroke survivors: A critical review,” Neurorehabil. Neural Repair 17(4), 220226 (2003).CrossRefGoogle ScholarPubMed
Taub, E., Miller, N. E., Novack, T. A., Cook, E. W., Fleming, W. C., Nepomuceno, C. S., Connell, J. S. and Crago, J. E., “Technique to improve chronic motor deficit after stroke,” Arch. Phys. Med. Rehabil. 74(4), 347354 (1993).Google ScholarPubMed
Harmo, P., Taipalus, T., Knuuttila, J., Vallet, J. and Halme, A., “Needs and solutions - Home automation and service robots for the elderly and disabled,” Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on IEEE, Edmonton, Alta, (2005) pp. 16.Google Scholar
Cowan, R. E., Fregly, B. J., Boninger, M. L., Chan, L., Rodgers, M. M. and Reinkensmeyer, D. J., “Recent trends in assistive technology for mobility,” J. Neuroeng. Rehabil. 9(1), 18 (2012).CrossRefGoogle ScholarPubMed
De Faria Borges, L. C. L., Filgueiras, L. V. L. and Maciel, C., “Towards a participatory development technique of assistive technology for mobility and speech impaired patients,” Brazilian Symposium on Human Factors in Computing Systems and the Latin American Conference on Human-computer Interaction, Brazil, (2011) pp. 247256.Google Scholar
Heidari, B., “Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I,” Caspian Journal of Internal Medicine 2(2), 205 (2011).Google ScholarPubMed
Andrianakos, A. A., Kontelis, L. K., Karamitsos, D. G., S. I. Aslanidis and P. C. Dantis “Prevalence of symptomatic knee, hand, and hip osteoarthritis in Greece. The ESORDIG study,” Journal of Rheumatology 33(12), 25072513 (2006).Google Scholar
Bliddal, H. and Christensen, R.. “The treatment and prevention of knee osteoarthritis: A tool for clinical decision-making,” Expert Opinion on Pharmacotherapy 10(11), 17931804 (2009).CrossRefGoogle ScholarPubMed
Buckwalter, J. A., “Sports, Joint Injury, and Posttraumatic Osteoarthritis,” Journal of Orthopaedic and Sports Physical Therapy 33(10), 578588 (2003).CrossRefGoogle ScholarPubMed
Zhang, Y. and Jordan, J. M., “Epidemiology of Osteoarthritis,” Clinics in Geriatric Medicine 26(3), 355369 (2008).CrossRefGoogle Scholar
Srikanth, V. K., Fryer, J. L., Zhai, G., Winzenberg, T. M., Hosmer, D. and Jones, G., “A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis,” Osteoarthr. Cartil. 13(9), 769781 (2005).CrossRefGoogle ScholarPubMed
Sowers, M. F., Karvonen-Gutierrez, C. A., Jacobson, J. A., Jiang, Y. and Yosef, M., “Associations of anatomical measures from MRI with radiographically defined knee osteoarthritis score, pain, and physical functioning,” J. Bone Jt Surg. Am. 93(3), 241 (2011).CrossRefGoogle ScholarPubMed
Reid, C. R., Bush, M. C., Cummings, N. H., Mcmullin, D. L. and Durrani, S. K., “A Review of Occupational Knee Disorders,” J. Occup. Rehabil. 20(4), 489501 (2010).CrossRefGoogle ScholarPubMed
Blagojevic, M., Jinks, C., Jeffery, A. and Jordan, K. P., “Risk factors for onset of osteoarthritis of the knee in older adults: A systematic review and meta-analysis,” Osteoarthr. Cartil. 18(1), 2433 (2010).CrossRefGoogle ScholarPubMed
Nur, H., Sertkaya, B. S. and Tuncer, T.. “Determinants of physical functioning in women with knee osteoarthritis,” Aging Clin. Exp. Res. 30(4), 299306, (2017).CrossRefGoogle ScholarPubMed
Neumann, D. A.. Kinesiology of the Musculoskeletal System. Kinesiology of the musculoskeletal system (Mosby/Elsevier, 2010).Google Scholar
Felson, D. T., “The epidemiology of knee osteoarthritis: Results from the Framingham Osteoarthritis Study,” Semin. Arthritis Rheum. 20(3 Suppl 1), 4250 (1991).CrossRefGoogle Scholar
Masouros, S., Bull, A. and Amis, A., Biomechanics of the knee joint, Orthop. Trauma 24(2), 8491 (2010).Google Scholar
Tuan Dao, T. and Tho, M. C. H. B.. Biomechanics of the Musculoskeletal System. Fundamentals of Biomechanics. (2003).Google Scholar
Penrose, D., Knee surgery. Occupational Therapy for Orthopaedic Conditions. Springer US, (1993).CrossRefGoogle Scholar
Maquet, P. G. J., Biomechanics of the Knee. Biomechanics of the knee. (1976).CrossRefGoogle Scholar
Rose, J. and Gamble, J. G., Human Walking, 2nd ed. Baltimore: Williams and Wilkins. (1994).Google Scholar
Shamaei, K., Sawicki, G. S. and Dollar, A. M., “Estimation of Quasi-Stiffness of the Human Hip in the Stance Phase of Walking,” PLos One 8(3), e59993 (2013).CrossRefGoogle ScholarPubMed
Cooke, T. D. V., Sled, E. A. and Scudamore, R. A., “Frontal plane knee alignment: A call for standardized measurement,” Journal of Rheumatology 34(9), 17961801 (2007).Google Scholar
Astephen, J. L., Deluzio, K. J., Caldwell, G. E. and Dunbar, M. J., “Biomechanical changes at the hip, knee, and ankle joints during gait are associated with knee osteoarthritis severity,” Journal of orthopaedic research: Official publication of the Orthopaedic Research Society 26(3), 332341 (2008).CrossRefGoogle Scholar
Astephen, J. L., Deluzio, K. J., Caldwell, G. E., Dunbar, M. J. and Hubley-Kozey, C. L., “Gait and neuromuscular pattern changes are associated with differences in knee osteoarthritis severity levels,” Journal of Biomechanics 41(4), 868876 (2008).CrossRefGoogle ScholarPubMed
Robbins, S. M., Astephen Wilson, J. L., Rutherford, D. J. and Hubley-Kozey, C. L., “Reliability of principal components and discrete parameters of knee angle and moment gait waveforms in individuals with moderate knee osteoarthritis,” Gait and Posture 38(3), 421427 (2013).CrossRefGoogle ScholarPubMed
Heidari, B., “Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I,” Caspian J. Intern. Med. 2(2), 205 (2011).Google ScholarPubMed
Zhang, W., Doherty, M., Peat, G., Bierma-Zeinstra, M. A., Arden, N. K., Bresnihan, B., Herrero-Beaumont, G., Kirschner, S., Leeb, B. F., Lohmander, L. S., Mazières, B., Pavelka, K., Punzi, L., So, A. K., Tuncer, T., Watt, I. and Bijlsma, J. W., “EULAR evidence-based recommendations for the diagnosis of knee osteoarthritis,” Ann Rheum Dis. 69(3), 483489 (2010).CrossRefGoogle Scholar
Heidari, B., Rheumatic, Diseases. 1st ed. (Babol: Iran Babol University of Medical Sciences Publication, 2002).Google Scholar
Sharma, L., “Osteoarthritis year in review 2015: Clinical,” Osteoarthr. Cartil. 24(1), 3648 (2016).CrossRefGoogle Scholar
Huang, D., Yan-Qing, L., Li-Shuang, L., Xue-Wu, L., Tao, S., Zhi-Gang, Z., Suo-Liang, W., Hong-Guang, B., Lin, W. and Xian-Wei, Z., “The diagnosis and therapy of degenerative knee joint disease: Expert consensus from the chinese pain medicine panel,” Pain Res. Manag. 2018, 1–14 (2018).Google Scholar
Urban, H. and Little, C. B., “The role of fat and inflammation in the pathogenesis and management of osteoarthritis,” Rheumatology (Oxford) 57(Suppl_4), iv10–iv21 (2018).CrossRefGoogle ScholarPubMed
Fransen, M., Mcconnell, S. and Bell, M., “Exercise for osteoarthritis of the knee,” Cochrane Database Syst. Rev. 1(9), CD004376 (2015).Google ScholarPubMed
McAlindon, T. E., Bannuru, R. R., Sullivan, M. C., Arden, N. K., Berenbaum, F., Bierma-Zeinstra, S. M., Hawker, G. A., Henrotin, Y., Hunter, D. J., Kawaguchi, H., Kwoh, K., Lohmander, S., Rannou, F., Roos, E. M. and Underwood, M., “OARSI guidelines for the non-surgical management of knee osteoarthritis,” Osteoarthr. Cartil. 363388 (2014).CrossRefGoogle Scholar
Bourgeois, T. J., Hernandez, J. R. and Cascio, B. M., “Physical therapy treatment of nonoperative and operative articular defects in the knee,” Oper. Tech. Sports Med. 16(4), 212220 (2008).CrossRefGoogle Scholar
Skou, S. T. et al., “Efficacy of multimodal, systematic non-surgical treatment of knee osteoarthritis for patients not eligible for a total knee replacement: A study protocol of a randomised controlled trial,” BMJ Open, 2(6), 18 (2012).CrossRefGoogle Scholar
Fransen, M., Mcconnell, S. and Bell, M.. “Exercise for osteoarthritis of the knee,” Cochrane Database Syst. Rev. 1(9), CD004376 (2015).Google ScholarPubMed
Lu, R., Li, Z., Su, C.-Y., Xue, A.Development and learning control of a human limb with a rehabilitation exoskeleton,” IEEE Trans. Ind. Electron. 61(7), 37763785 (2014).CrossRefGoogle Scholar
Musumeci, G., Loreto, C., Imbesi, R. et al.Advantages of exercise in rehabilitation, treatment and prevention of altered morphological features in knee osteoarthritis. A narrative review,” Histol. Histopathol. 29(6), 707719 (2014).Google ScholarPubMed
Hartofilakidis, G., Babis, G. C., and Lampropoulou-Adamidou, K., Treatment Options, Except Total Hip Replacement: Conservative Management and Osteotomies. Congenital Hip Disease in Adults (Springer, Milan, 2014).CrossRefGoogle Scholar
Shelburne, K.B., Torry, M. R., Steadman, J. R. and Pandy, M. G., “Effects of foot orthoses and valgus bracing on the knee adduction moment and medial joint load during gait,” Clinical Biomechanics 23(6), 814821 (2008). doi: 10.1016/j.clinbiomech.2008.02.005.CrossRefGoogle ScholarPubMed
Taylor, W. R., Heller, M. O., Bergmann, G. and Duda, G. N., “Tibio-femoral loading during human gait and stair climbing,” J. Orthop. Res. 22(3), 625632 (2004).CrossRefGoogle ScholarPubMed
Dollar, A. M. and Herr, H., “Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art,” IEEE Transactions on Robotics, 24(1), 144158 (2008), doi: 10.1109/TRO.2008.915453.CrossRefGoogle Scholar
Bacek, T., Moltedo, M., Langlois, K., Rodriguez-Guerrero, C., Vanderborght, B. and Lefeber, D., “A novel modular compliant knee joint actuator for use in assistive and rehabilitation orthoses,” 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, (2017) pp. 58125817.Google Scholar
Bacek, T., Moltedo, M., Rodriguez-Guerrero, C., Geeroms, J., Vanderborght, B. and Lefeber, D., “Design and evaluation of a torque-controllable knee joint actuator with adjustable series compliance and parallel elasticity,” Mech. Mach. Theory 130(2018), 7185.CrossRefGoogle Scholar
Maeda, D., Tominaga, K., Oku, T., Pham, H. T. T., Saeki, S., Uemura, M., Hirai, H. and Miyazaki, F., “Muscle synergy analysis of human adaptation to a variable-stiffness exoskeleton: Human walk with a knee exoskeleton with pneumatic artificial muscles,” 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), Osaka, (2012) pp. 638644.Google Scholar
Kim, J. Y. and Cho, B. K.. “Development of a lower limb exoskeleton worn on the front of a human,” J. Intell. Robot. Syst. 96(1), 4964 (2019).CrossRefGoogle Scholar
Asbeck, A. T., Rossi, D., Stefano, M. M., Galiana, I., Ding, Y. and Walsh, C. J., “Stronger, smarter, softer: Next-generation wearable robots,” IEEE Robot. Automat. Mag. 21(4), 2233 (2014).CrossRefGoogle Scholar
Asbeck, A. T., Rossi, S. M. M. D., Holt, K. G. and Walsh, C. J., “A biologically inspired soft exosuit for walking assistance,” Int. J. Robot. Res. 34(6), 744762 (2015).CrossRefGoogle Scholar
Mazumder, O., Kundu, A. S., Chattaraj, R., Lenka, P. K., Gupta, K. and Bhaumik, S., “Development of series elastic actuator based myoelectric knee exoskeleton for trajectory generation and load augmentation,” Conference on Advances in Robotics ACM, Goa, India, (2015) pp. 16.Google Scholar
Ma, H., Lai, W. Y., Liao, W. H., Fong, D. T. P. and Chan, K. M., “Design and control of a powered knee orthosis for gait assistance,” 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong, NSW, (2013) pp. 816821.Google Scholar
Ma, H., Chen, B., Qin, L. and Lia, W. H., “Design and testing of a regenerative magnetorheological actuator for assistive knee braces,” Smart Mater. Struct. 26(3), 035013 (2017).CrossRefGoogle Scholar
Rifa, H., Mohammed, S., Hassani, W. and Amirat, Y., “Nested saturation based control of an actuated knee joint orthosis,” Mechatronics 23(8), 11411149 (2013).CrossRefGoogle Scholar
Liao, Y., Zhou, Z. and Wang, Q., “BioKEX: A bionic knee exoskeleton with proxy-based sliding mode control,” 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, (2015) pp. 125130.Google Scholar
Zhou, Z., Liao, Y., Wang, C. and Wang, Q., “Preliminary evaluation of gait assistance during treadmill walking with a light-weight bionic knee exoskeleton,” 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, (2016) pp. 11731178.Google Scholar
Cao, J., Xie, S. Q. and Das, R., “MIMO Sliding Mode Controller for Gait Exoskeleton Driven by Pneumatic Muscles,” IEEE Transactions on Control Systems Technology, 26(1), 274281 (2018), doi: 10.1109/TCST.2017.2654424.CrossRefGoogle Scholar
Beyl, P., Knaepen, K., Duerinck, S., Van Damme, M., Vanderborght, B., Meeusen, R. and Lefeber, D., “Safe and compliant guidance by a powered knee exoskeleton for robot-assisted rehabilitation of gait,” Adv. Robot. 25(5), 513535 (2011).CrossRefGoogle Scholar
Knaepen, K., Beyl, P., Duerinck, S., Hagman, F., Lefeber, D. and Meeusen, R., “Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton,” IEEE Trans. Neural. Syst. Rehabil. Eng. 22(6), 11281137 (2014).CrossRefGoogle ScholarPubMed
Esquenazi, A., Talaty, M., Packel, A. and Saulino, M., “The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury,” Am. J. Phys. Med. Rehabil. 91(11), 911921 (2012).CrossRefGoogle ScholarPubMed
Neuhaus, P. and Kazerooni, H., “Design and control of human assisted walking robot,” Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings, San Francisco, CA, (2000) pp. 563569.Google Scholar
Prassler, E. and Baroncelli, A., “Team ReWalk ranked first in the cybathlon 2016 exoskeleton final industrial activities,” IEEE Robot. Automat. Mag. 24(4), 810 (2017).Google Scholar
Milia, P., Salvo, F. D., Caserio, M., Cope, T. and Bigazzi, M., “Neurorehabilitation in paraplegic patients with an active powered exoskeleton (Ekso),” Digit. Med. 2(4), 163 (2016).CrossRefGoogle Scholar
Ugarte, M. R., Iáñez, E., García, M. O. and Azorin, J. M., “Effects of tDCS on real-time BCI detection of pedaling motor imagery,” Sensors 18(4), 1136 (2018).CrossRefGoogle Scholar
Pollo, F. E., Otis, J. C., Backus, S. I., Warren, R. F. and Wickiewicz, T. L., “Reduction of medial compartment loads with valgus bracing of the osteoarthritic knee,” Am. J. Sports Med. 30(3), 414 (2015).CrossRefGoogle Scholar
Rannou, F. and Poiraudeau, S., “Non-pharmacological approaches for the treatment of osteoarthritis,” Best Pract. Res. Clin. Rheumatol. 24(1), 93106 (2010).CrossRefGoogle ScholarPubMed
Segal, N. A., “Bracing and orthoses: a review of efficacy and mechanical effects for tibiofemoral osteoarthritis,” Phys. Med. Rehabil. 4(5), 8996 (2012).Google ScholarPubMed
Zhang, W., Moskowitz, R. W., Nuki, G., Abramson, S., Altman, R. D., Arden, N., Bierma-Zeinstra, S., Brandt, K. D., Croft, P. and Doherty, M., “OARSI recommendations for the management of hip and knee osteoarthritis, PartII: OARSI evidence-based, expert consensus guidelines,” Osteoarthr. Cartil. 16(2), 137162 (2008).CrossRefGoogle Scholar
Brouwer, R. W., Raaij, T. M. V., Verhaar, J. A. N., L. N. J. E. M. Coene and S. M. A. Bierma-Zeinstra, “Brace treatment for osteoarthritis of the knee: A prospective randomized multi-centre trial,” Osteoarthr. Cartil. 14(8), 777783 (2006).CrossRefGoogle Scholar
Moyer, R. F., Birmingham, T. B., Bryant, D. M., Giffin, J. R., Marriott, K. A. and Leitch, K. M., “Biomechanical effects of valgus knee bracing: A systematic review and meta-analysis,” Osteoarthr. Cartil. 23(2), 178188 (2014).CrossRefGoogle ScholarPubMed
Gaasbeek, R. D. A., Groen, B. E., Hampsink, B., van Heerwaarden, R. J. and Duysens, J., “Valgus bracing in patients with medial compartment osteoarthritis of the knee: A gait analysis study of a new brace,” Gait Posture, 26(1), 310 (2007).CrossRefGoogle ScholarPubMed
Karimi, M. T., Esrafilian, A. and Amiri, P., “Design and evaluation of a new type of knee orthosis to align the mediolateral angle of the knee joint with osteoarthritis,” Adv Orthop. 2012, 100104 (2012).Google Scholar
Arazpour, M., Bani, M. A., Hutchins, S. W., Jones, R. K. and Babadi, M. H., “Frontal plane corrective ability of a new unloader orthosis for medial compartment of the knee,” Prosthet. Orthot. Int. 37(6), 481488 (2013).CrossRefGoogle Scholar
Fantini Pagani, C. H., Willwacher, S., Kleis, B. and Brüggemann, G. P., “Influence of a valgus knee brace on muscle activation and co-contraction in patients with medial knee osteoarthritis,” J. Electromyogr. Kinesiol. 23(2), 490500 (2013).CrossRefGoogle ScholarPubMed
Hangalur, G., Bakker, R., Tomescu, S. and Chandrashekar, N., “New adjustable unloader knee brace and its effectiveness,” J. Med. Devices 12(1), 18 (2018).CrossRefGoogle Scholar
Pollo, F. E, Otis, J. C., Backus, S. I., Warren, R. F. and Wickiewicz, T. L., “Reduction of medial compartment loads with valgus bracing of the osteoarthritic knee,” Am. J. Sports Med. 30(3), 414 (2015).CrossRefGoogle Scholar
Philippe, T., Marc, M., Bernard, A., Adeline, P., Arnaud, V., Linh, P. T. P., André, M., Nicolas, G., Armand, B., Cyrine, B. A. and Emmanuel, C., “Effect of unloading brace treatment on pain and function in patients with symptomatic knee osteoarthritis: The ROTOR randomized clinical trial,” Sci. Rep. 8(1), 10519 (2018).Google Scholar
Laroche, D., Morisset, C., Fortunet, C., Gremeaux, V., Maillefert, J. F. and Ornetti, P., “Biomechanical effectiveness of a distraction–rotation knee brace in medial knee osteoarthritis: Preliminary results,” Knee 21(3), 710716 (2014).CrossRefGoogle ScholarPubMed
Ornetti, P., Fortunet, C., Morisset, C., Gremeaux, V., Maillefert, J. F., Casillas, J. M. and Laroche, D., “Clinical effectiveness and safety of a distraction-rotation knee brace for medial knee osteoarthritis,” Ann. Phys. Rehabil. Med. 58(3), 126131 (2015).CrossRefGoogle ScholarPubMed
Dessery, Y., Belzile, E. L., Turmel, S. and Corbeil, P., “Comparison of three knee braces in the treatment of medial knee osteoarthritis,” Knee 21(6), 11071114 (2014).CrossRefGoogle ScholarPubMed
Jafarnezhadgero, A. A., Oliveira, A. S., Mousavi, S. H. and Madadi-Shad, M., “Combining valgus knee brace and lateral foot wedges reduces external forces and moments in osteoarthritis patients,” Gait Posture 59, 104110 (2017).CrossRefGoogle ScholarPubMed
Lamberg, E. M., Streb, R., Werner, M., Kremenic, I. and Penna, J., “The 2- and 8-week effects of decompressive brace use in people with medial compartment knee osteoarthritis,” Prosthet. Orthot. Int. 40(4), 447453 (2015).CrossRefGoogle ScholarPubMed
Jeffrey, J., “Strength and functional improvement using pneumatic brace with extension assist for end-stage knee osteoarthritis: A prospective, randomized trial,” J. Arthroplasty 30(5), 747753 (2015).Google Scholar
Lewek, M., “Control of frontal plane knee laxity during gait in patients with medial compartment knee osteoarthritis,” Osteoarthr. Cartil. 12(9), 745751 (2004).CrossRefGoogle ScholarPubMed
Messier, S. P., Loeser, R. F., Hoover, J. L., Semble, E. L. and Wise, C. M., “Osteoarthritis of the knee: Effects on gait, strength, and flexibility,Arch. Phys. Med. Rehabil. 2936 (1992).Google Scholar
Childs, J. D., Sparto, P. J., Fitzgerald, G. K., Bizzini, M. and Irrgang, J. J., “Alterations in lower extremity movement and muscle activation patterns in individuals with knee osteoarthritis,” Clin. Biomech. 19(1), 49 (2004).CrossRefGoogle ScholarPubMed
Rudolph, K. S., Axe, M. J., Buchanan, T. S., Scholz, J. P. and Snyder-Mackler, L., “Dynamic stability in the anterior cruciate ligament deficient knee,” Knee Surg. Sports Traumatol. Arthrosc. 9(2), 6271 (2001).CrossRefGoogle ScholarPubMed
Hodge, W., “Contact pressure from an instrumented hip endoprosthesis,” J. Bone Jt. Surg. Am. 71(9), 13781386 (1989).CrossRefGoogle ScholarPubMed
Schmitt, L. C. and Rudolph, K. S.. “Influences on knee movement strategies during walking in persons with medial knee osteoarthritis,” Arthritis Rheum. 57(6), 10181026 (2007).CrossRefGoogle ScholarPubMed
Denis, M., Moffet, H., Caron, F., Ouellet, D., Paquet, J., and Nolet, L., “Effectiveness of continuous passive motion and conventional physical therapy after total knee arthroplasty: A randomized clinical trial,” Phys. Ther. 86(2), 174185 (2006).CrossRefGoogle ScholarPubMed
Joice, M. G., Bhowmick, S. and Amanatullah, D. F., “Perioperative physiotherapy in total knee arthroplasty,” Orthopedics 40(5), E765E773 (2017).CrossRefGoogle ScholarPubMed
Hube, R., Mayr, H. O., Von, P. R., Najfeld, M. and Thiele, K., “Perioperative management in total knee arthroplasty,” Curr. Orthop. Pract. 26(3), 217223 (2015).Google Scholar
Horst, R. W. and Marcus, R. R., “FlexCVA: A Continuously Variable Actuator for Active Orthotics,” Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 1(New York, 2006) pp. 24252428.CrossRefGoogle Scholar
Costa, N. R. S., Lower Body Exoskeleton for Walking Gait Assistance and Performance Augmentation using Compliance Controlled Actuators (University of Salford, 2008).Google Scholar
Costa, N. and Caldwell, D. G., “Control of a Biomimetic ‘Soft-actuated’ 10DoF Lower Body Exoskeleton,” The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, 495501 (2006).Google Scholar
Zhu, Y., Nakamura, M., Horiuchi, T., Kohno, H., Takahashi, R., Terada, H. and Haro, H., “New wearable walking-type continuous passive motion device for postsurgery walking rehabilitation,” Proc. Ins. Mech. Eng. Part H J. Eng. Med. 227(7), 733745 (2013).CrossRefGoogle ScholarPubMed
Lim, D., Kim, W., Lee, H., Kim, H., Shin, K., Park, T., Lee, J. Y. and Han, C., “Development of a lower extremity Exoskeleton Robot with a quasi-anthropomorphic design approach for load carriage,” 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg (2015) pp. 53455350.Google Scholar
Ezzibdeh, R., Arora, P. and Amanatullah, D. F., “Utilization of a pneumatic exoskeleton after total knee arthroplasty,” Arthroplast. Today 5(3), 314315 (2019).CrossRefGoogle ScholarPubMed
Kyousuke, G., Kotani, N., Hiroyuki, F., Kazuya, S., Reiko, T., Arisa, K., Satoshi, K., Kazuhiko, S., Etuji, S. and Masatoshi, N., “Effectiveness of the single-joint HAL robot suit for rehabilitation after orthopedic surgery,” Physiotherapy 101, e806e807 (2015).CrossRefGoogle Scholar
Sandra, P., Hideki, K., Shigeki, K., Tetsuya, A., Yukiyo, S., Aiki, M., Yoshiyuki, S., Masashi, Y. and Kenji, S., “Reshaping of gait coordination by robotic intervention in myelopathy patients after surgery,” Front. Neurosci. 12, 99 (2018).Google Scholar
Farris, R. J., Quintero, H. A. and Goldfarb, M., “Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals,” IEEE Trans. Neural Syst. Rehabil. Eng. A Publ. IEEE Eng. Med. Biol. Soc. 19(6), 652659 (2011).CrossRefGoogle ScholarPubMed
Hartigan, C., Kandilakis, C., Dalley, S., Clausen, M. and Farris, R., “Mobility outcomes following five training sessions with a powered exoskeleton,” Top. Spinal Cord Inj. Rehabil. 21(2), 9399 (2015).CrossRefGoogle ScholarPubMed
Quintero, H. A., Farris, R. J. and Goldfarb, M., “A method for the autonomous control of lower limb exoskeletons for persons with paraplegia,” J. Med. Devices 6(4), 04100310410036 (2012).CrossRefGoogle Scholar
Ha, K. H., Murray, S. A. and Goldfarb, M., “An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia,” IEEE Trans. Neural Syst. Rehabil. Eng. 24(4), 455466 (2016).CrossRefGoogle ScholarPubMed
Weir, R. F., Troyk, P. R., DeMichele, G. A., Kerns, D. A., Schorsch, J. F. and Maas, H., “Implantable Myoelectric Sensors (IMESs) for intramuscular electromyogram recording,” IEEE Trans. Biomed. Eng. 56(1), 159171 (2009).CrossRefGoogle ScholarPubMed