Article contents
Design, analysis and optimization of Hex4, a new 2R1T overconstrained parallel manipulator with actuation redundancy
Published online by Cambridge University Press: 09 October 2018
Summary
PMs with two rotations and one translation (2R1T) have been used as skeletons in various advanced manufacturing equipment where high accuracy and stiffness are basic requirements. Considering the advantages of redundant actuation and overconstrained structure, such as reduced singularities and improved stiffness, a new 2R1T overconstrained PM with actuation redundancy, called Hex4, is proposed in this paper. This is a 2-PUR/2-RPU PM (where P denotes an actuated prismatic joint, U a universal joint, and R a revolute joint) that is actuated by four prismatic joints. Compared with some existing 2R1T overconstrained PMs with actuation redundancy, the main advantage of the proposed PM is that the heavy motors of two limbs are mounted on the base to reduce the movable mass and improve dynamic response. First, mobility analysis, inverse kinematics, and velocity analysis are presented. Then, the local transmission index and good transmission workspace are used to evaluate the motion/force transmissibility of the Hex4 PM. The variation tendencies of the two indices with different link parameters are investigated. The singularity is then discussed by considering the motion/force transmissibility. Finally, link parameters are optimized to obtain an improved good transmission workspace. It is shown that the proposed PM has a good potential for high precision applications.
- Type
- Articles
- Information
- Copyright
- Copyright © Cambridge University Press 2018
References
- 10
- Cited by