Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T05:16:54.076Z Has data issue: false hasContentIssue false

Autonomous vehicle based in cooperative GPS and inertial systems

Published online by Cambridge University Press:  01 September 2008

Vicente Milanés*
Affiliation:
Instituto de Automática Industrial (IAI – CSIC), Carretera de Campo Real km 0.200, La Poveda. Arganda del Rey. 28500 Madrid (España)
José E. Naranjo
Affiliation:
Instituto de Automática Industrial (IAI – CSIC), Carretera de Campo Real km 0.200, La Poveda. Arganda del Rey. 28500 Madrid (España)
Carlos González
Affiliation:
Instituto de Automática Industrial (IAI – CSIC), Carretera de Campo Real km 0.200, La Poveda. Arganda del Rey. 28500 Madrid (España)
Javier Alonso
Affiliation:
Instituto de Automática Industrial (IAI – CSIC), Carretera de Campo Real km 0.200, La Poveda. Arganda del Rey. 28500 Madrid (España)
Teresa de Pedro
Affiliation:
Instituto de Automática Industrial (IAI – CSIC), Carretera de Campo Real km 0.200, La Poveda. Arganda del Rey. 28500 Madrid (España)
*
*Corresponding author. E-mail: [email protected]

Summary

A system including Global Positioning Systems (GPS) and digital cartography is a good solution to carry out vehicle's guidance. However, it has inconveniences like high sensibility to multipath and interference when the GPS signal is blocked by external agents. Another system is mandatory to avoid this error. This paper presents a cooperative system based on GPS and Inertial Navigation Systems (INS) for automated vehicle position. The control system includes a decision unit to choose which value is the correct. In case GPS is working at top precision, it takes the control. On the other part, GPS signal can be lost and inertial control system guides the car in this occasion. A third possibility is contemplated: we receive the signal from GPS but the accuracy is over one meter. Now, position value is obtained by means of both systems. Experimental results analyze two situations: guidance in an urban area where GPS signal can be occluded by buildings or trees during short time intervals and the possibility of loss of the signal in long time to simulate the circulation in tunnels. Good results have been observed in tests and it demonstrates how a cooperative system improves the automated vehicle guidance.

Type
Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Britting, K. R., Inertial Navigation Systems Analysis (Wiley, New York, 1999).Google Scholar
2.Farrel, J. A., Barth, M., Galijan, R., and Sinko, J., “GPS/INS Based Lateral and Longitudinal Control Demonstration: Final Report,” California Partners for Advanced Transit and Highways (PATH), Paper UCB-ITS-PRR-98-28 (1998).Google Scholar
3.Farrel, J. A. and Barth, M., The Global Positioning System & Inertial Navigation (McGraw-Hill, New York, 1999).Google Scholar
4.Farrel, J. A., Tan, H. and Yang, Y., “Carrier phase GPS-aided INS-based vehicle lateral control,” J. Dyn. Syst., Meas., and Control 125 (3), 339353 (2003).CrossRefGoogle Scholar
5.Hong, S., Hyung Lee, M., Hong Kwon, S. and Hwan Chun, H., “A car test for the estimation of GPS/INS alignment errors,” IEEE Trans. Intell. Trans. Syst. 5 (3), 208218 (2004).CrossRefGoogle Scholar
6.Hong, S., Hyung Lee, M., Hwan Chun, H., Hong Kwon, S. and Speyer, S. L., “Experimental study on the estimation of lever arm in GPS/INS,” IEEE Trans. Veh. Technol. 55 (2), 431448 (2006).CrossRefGoogle Scholar
7.Li, W. and Leung, H., “Constrained unscented Kalman filter based fusion of GPS/INS/Digital map for vehicle localization,” IEEE Trans. Intell. Trans. Syst. 2, 431448 (2003).Google Scholar
8.Obradovic, D., Lenz, H. and Schupfner, M., “Fusion of sensor data in Siemens car navigation system,” IEEE Trans. Veh. Technol. 56 (1), 4350 (2007).Google Scholar
9.Urmson, C., Anhalt, J., Bartz, D., Clark, M., Galatali, T., Gutierrez, A., Harbaugh, S., Johnston, J., Kato, H., Koon, P. L., Messner, W., Miller, N., Mosher, A., Peterson, K., Ragusa, C., Ray, D., Smith, B. K., Snider, J. M., Spiker, S., Struble, J. C., Ziglar, J. and Whittaker, W. L., A robust approach to high-speed navigation for unrehearsed desert terrain, J. Field Robot. 23 (8), 467508 (2006).Google Scholar
10.Wang, F., Herget, C. and Zeng, D., “Developing and improving transportation systems: The structure and operation of IEEE intelligent transportation system society,” (Guest Editorial) IEEE Trans. Intell. Trans. Syst. 6 (3), 261264 (2005).CrossRefGoogle Scholar
11.Wang, J., Schroedl, S., Mezger, K., Ortloff, R., Joos, A. and Passegger, T., “Lane keeping based on localization technology,” IEEE Trans. Intell. Trans. Syst. 6 (3), 351356 (2005).Google Scholar
12.Wright, M., Stallings, D. and Duna, D., “The effectiveness of global positioning system electronic navigation,” Procceedings IEEE SoutheastCon, Ocho Rios (Jamaica), 62–67 (2003).Google Scholar