Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T18:59:53.784Z Has data issue: false hasContentIssue false

On the design of traps for feeding 3D parts on vibratory tracks

Published online by Cambridge University Press:  01 July 2008

Onno C. Goemans
Affiliation:
Institute of Information and Computing Sciences, Utrecht University, PO Box 80089, 3508 TB Utrecht, The Netherlands
A. Frank van der Stappen*
Affiliation:
Institute of Information and Computing Sciences, Utrecht University, PO Box 80089, 3508 TB Utrecht, The Netherlands
*
*Corresponding author. E-mail: [email protected]

Summary

In the context of automated feeding (orienting) of industrial parts, we study the algorithmic design of traps in the bowl feeder track that filter out all but one orientation of a given polyhedral part. We propose a new class of traps that removes a V-shaped portion of the track. The proposed work advances the state-of-the-art in algorithmic trap design by extending earlier work1,6,17—which focuses solely on 2D parts—to 3D parts, and by incorporating a more realistic part motion model in the design algorithm. We exploit the geometric structure of the design problem and build on concepts and techniques from computational geometry to obtain an efficient algorithm that reports the complete set of valid traps.

Type
Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Agarwal, P., Collins, A. and Harer, J., “Minimal trap design,” In Proc. IEEE International Conference on Robotics and Automation 22432248 (2001).Google Scholar
2.Akella, S., Huang, W., Lynch, K. and Mason, M., “Parts feeding on a conveyor with a one joint robot,” Algorithmica 26 (3), 313344 (2000).Google Scholar
3.Akella, S. and Mason, M., “Posing polygonal objects in the plane by pushing,” IEEE ICRA 22552262 (1992).Google Scholar
4.Berkowitz, D. and Canny, J., “Designing part feeders using dynamic simulation,” IEEE ICRA 11271132 (1996).Google Scholar
5.Berretty, R.-P., Goldberg, K., Overmars, M. and Stappen, A. van der, “Computing fence designs for orienting parts,” Comput. Geom. Theor. Appl. 10 (4), 249262 (1998).CrossRefGoogle Scholar
6.Berretty, R.-P., Goldberg, K., Overmars, M. and Stappen, A. van der, “Trap design for vibratory bowl feeders,” Int. J. Robot. Res. 20, 891908 (2001).CrossRefGoogle Scholar
7.Berretty, R.-P., Overmars, M. and Stappen, A. van der, “Orienting polyhedral parts by pushing,” Comput. Geom. 21 (1–2), 2138 (2002).CrossRefGoogle Scholar
8.Bohringer, K.-F., Bhatt, V., Donald, B. and Goldberg, K., “Algorithms for sensorless manipulation using a vibrating surface,” Algorithmica 26, 389429 (2000).CrossRefGoogle Scholar
9.Boothroyd, G., Assembly Automation and Product Design, Taylor & Francis Ltd., Boca Raton, Florida, (2005).CrossRefGoogle Scholar
10.Boothroyd, G., Poli, C. and Murch, L., Automatic Assembly (Marcel Dekker, New York, 1982).Google Scholar
11.Brokowski, M., Peshkin, M. and Goldberg, K., “Optimal curved fences for part alignment on a belt,” ASME Trans. Mech. Des. 117, 2734 (1995).CrossRefGoogle Scholar
12.Caine, M., “The design of shape interactions using motion constraints,” In Proc. IEEE International Conference on Robotics and Automation 366371 (1994).Google Scholar
13.Christiansen, A., Edwards, A. and Coello, C., “Automated design of parts feeders using a genetic algorithm,” In Proc. IEEE International Conference on Robotics and Automation 846851 (1996).CrossRefGoogle Scholar
14.Berg, M. de, Kreveld, M. van, Overmars, M. and Schwarzkopf, O., Computat. Geom. – Algorithms and Appl., Springer-Verlag, Berlin, (1997).Google Scholar
15.Erdmann, M. and Mason, M., “An exploration of sensorless manipulation,” IEEE J. Robot. and Autom. 4 (4), 367379 (1988).CrossRefGoogle Scholar
16.Goemans, O., Goldberg, K. and Stappen, A. van der, “Blades: A geometric primitive for feeding 3d parts on vibratory tracks,” In Proc. IEEE International Conference on Robotics and Automation 17301736 (2006).Google Scholar
17.Goemans, O., Levandowski, A., Goldberg, K. and Stappen, A. van der, “On the design of guillotine traps for vibratory bowl feeders,” In Proc. IEEE Conference on Automation Science and Engineering 7986 (2005).Google Scholar
18.Goldberg, K., “Orienting polygonal parts without sensors,” Algorithmica 10, 201225 (1993).CrossRefGoogle Scholar
19.Goodman, J. and Rourke, J., eds. Handbook of Discrete and Computational Geometry, 2nd ed. eds. Goodman, J. E. and O'Rourke, J., CRC Press, Boca Raton, Florida (2004).Google Scholar
20.Graham, R., “An efficient algorithm for determining the convex hull of a finite planar set,” Inform. Process. Lett. 1, 132133 (1972).CrossRefGoogle Scholar
21.Jakiela, M. and Krishnasamy, J., “Computer simulation of vibratory part feeding and assembly,” In Proc. 2nd International Conference on Discrete Element Methods (1993) pp. 403411.Google Scholar
22.Lim, L., Ngoi, B., Lee, S., Lye, S. and Tan, P., “A computer-aided framework for the selection and sequencing of orientating devices for the vibratory bowl feeder,” Int. J. Prod. Res. 32 (11), 25132524 (1994).CrossRefGoogle Scholar
23.Lynch, K., “Inexpensive conveyor-based parts feeding,” Assem. Autom. J. 19 (3), 209215 (1999).CrossRefGoogle Scholar
24.Lynch, K. and Mason, M., “Stable pushing: Mechanics, controllability and planning,” Int. J. Robot. Res. 15 (6), 533556 (1996).CrossRefGoogle Scholar
25.Mason, M.. Mechanics of Robotic Manipulation (MIT Press, Cambridge, MA 2001).CrossRefGoogle Scholar
26.Maul, G. and Thomas, M., “A systems model and simulation of the vibratory bowl feeder,” Journal of Manufacturing Systems 16 (5), 309314 (1997).CrossRefGoogle Scholar
27.Natarajan, B., “Some paradigms for the automated design of parts feeders,” Int. J. Robot. Res. 8 (6), 89109 (1989).CrossRefGoogle Scholar
28.Peshkin, M. and Sanderson, A., “The motion of a pushed sliding workpiece,” IEEE J. Robot. Autom. 4 (6), 569598 (1988).CrossRefGoogle Scholar
29.Reznik, D. and Canny, J., “Universal part manipulation in the plane with a single horizontally vibrating plate,” Robot., the Algorithmic Perspect. 2324 (1998).Google Scholar
30.Selig, J. and Dai, J., “Dynamics of vibratory bowl feeders,” In Proc. IEEE International Conference on Robotics and Automation 32993304 (2005).Google Scholar
31.Silversides, R., Dai, J. and Seneviratne, L., “Force analysis of a vibratory bowl feeder for automatic assembly,” ASME: J. Mech. Des. 127 (4), 637645 (2005).Google Scholar
32.Wiegley, J., Goldberg, K., Peshkin, M. and Brokowski, M., “A complete algorithm for designing passive fences to orient parts,” Assem. Autom. 17 (2), 129136 (1997).CrossRefGoogle Scholar
33.Zhang, R. and Gupta, K., “Automatic orienting of polyhedra through step devices,” In Proc. IEEE International Conference on Robotics and Automation 550556 (1998).Google Scholar
34.Zhang, T., Smith, G., Berretty, R.-P., Goldberg, K. and Overmars, M., “The toppling graph: Designing pin sequences for part feeding,” In Proc. IEEE International Conference on Robotics and Automation 139146 (2000).Google Scholar