Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-22T16:47:24.607Z Has data issue: false hasContentIssue false

BILATERAL RELEVANT LOGIC

Published online by Cambridge University Press:  16 April 2014

NISSIM FRANCEZ*
Affiliation:
Computer Science dept., the Technion-IIT, Haifa, Israel ([email protected]).
*
*COMPUTER SCIENCE DEPARTMENT THE TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY HAIFA, ISRAEL E-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Anderson, A. R., & Belnap, N. D Jr. (1975). Entailment, Vol. 1. N.J.: Princeton University Press.Google Scholar
Belnap, N. (1962). Tonk, Plonk and Plink. Analysis, 22, 130134.CrossRefGoogle Scholar
Davies, R., & Pfenning, F. (2001). A modal analysis of staged computation. Journal of the ACM, 48(3), 555604.Google Scholar
Dummett, M. (1991, paperback; 1993, hard copy). The Logical Basis of Metaphysics. Cambridge, MA: Harvard University Press .Google Scholar
Dutilh-Novaes, C. (2008). Contradiction: The real philosophical challenge for paraconsistent logic. In Béziau, J.-Y., Carnielli, W. A., and Gabbay, D., editors. Handbook ofParaconsistency. Amsterdam: Elsevier, pp. 465480.Google Scholar
Francez, N. (2013a). Bilateralism in proof-theoretic semantics. Journal of Philosophical Logic. DOI: 10.1007/s10992-012-9261-3.Google Scholar
Francez, N. (2013b). Harmony in multiple-conclusions natural-deduction, Logica Universalis, to appear.Google Scholar
Francez, N. (2013c). Relevant harmony. Journal of Logic and Computation. DOI: 10.1093/logcom/ext026. Special issue Logic: Between Semantics and Proof Theory, in honor of Arnon Avron’s 60th birthday.Google Scholar
Francez, N. (2014). Views of proof-theoretic semantics: Reified proof-theoretic meanings. Journal of Computational Logic, to appear. Special issue in honour of Roy Dyckhoff.Google Scholar
Francez, N., & Ben-Avi, G. (September 2011). Proof-theoretic semantic values for logical operators. Review of Symbolic Logic, 4(3), 337485.Google Scholar
Francez, N., & Dyckhoff, R. (2012). A note on harmony. Journal of Philosophical Logic, 41(3), 613628.Google Scholar
Humberstone, L. (2000). The revival of rejective negation. Journal of Philosophical Logic, 29(4), 331381.Google Scholar
Mares, E. D. (2004). Relevant Logic: A Philosophical Interpretation. Cambridge: Cambridge University Press.Google Scholar
Mares, E. D. (2012). Relevance and conjunction. Journal of Logic and Computation, 22, 721.CrossRefGoogle Scholar
Paoli, F. (2002). Substructural Logics: A Primer. Dordrecht, The Netherlands: Kluwer.Google Scholar
Paoli, F. (2007). Implicational paradoxes and the meaning of logical constants. Australasian Journal of Philosophy, 25(4), 553579.Google Scholar
Pfenning, F., & Davies, R. (2001). A judgmental reconstruction of modal logic. Mathematical Structures in Computer Science, 11, 511540.Google Scholar
Prawitz, D. (1965). Natural Deduction: A Proof-Theoretical Study. Stockholm: Almqvist and Wicksell. Soft cover edition by Dover, 2006.Google Scholar
Prawitz, D. (1971). Ideas and results in proof theory. In Fenstad, J., editor. Proceedings of 2nd Scandinavian Symposium. Amsterdam, The Netherlands: North-Holland.Google Scholar
Prawitz, D. (1978). Proofs and the meaning and completeness of logical constants. In Hintikka, J., Niiniluoto, I., and Saarinen, E., editors. Essays in Mathematical and Philosophical Logic. Dordrecht: Reidel, pp. 2540.Google Scholar
Priest, G. (1999). Negation as cancellation, and connexive logic. Topoi, 18, 141148.Google Scholar
Prior, A. N. (1960). The runabout inference-ticket. Analysis, 21, 3839.Google Scholar
Read, S. (2010). General-elimination harmony and the meaning of the logical constants. Journal of Philosophic Logic, 39, 557576.Google Scholar
Read, S. (2014). General elimination harmony and higher-level rules. In Wansing, H., editor. Dag Prawitz on Proofs and Meaning. Springer Verlag, to appear. Studia Logica Outstanding contributions to logic series.Google Scholar
Restall, G. (2000). An introduction to substructural logics. London, UK: Routledge.Google Scholar
Rumfitt, I. (2000). ‘Yes’ and ‘no’. Mind, 169(436), 781823.Google Scholar
Rumfitt, I. (2008). Co-ordination principles: A reply. Mind, 117(468), 10591063.Google Scholar
Schroeder-Heister, P. (1984). A natural extension of natural deduction. Journal of Symbolic Logic, 49, 12841300.Google Scholar
Schroeder-Heister, P., & Dos̆en, K. (1993). Substructural Logics. Oxford University Press.Google Scholar
Tennant, N. (1997). The Taming of the True. Oxford, United Kingdom: Oxford University Press.Google Scholar
Tranchini, L. Refutations: A proof-theoretic account. In Marletti, C., editor. First Pisa colloquium on logic, language and epistemology, Pisa: ETS, 2010, pp. 133150. ETS.Google Scholar
von Plato, J. (2001). Natural deduction with general elimination rules. Archive for Mathematical Logic, 40, 541567.CrossRefGoogle Scholar