Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T21:41:54.831Z Has data issue: false hasContentIssue false

RELEVANCE LOGIC AND THE CALCULUS OF RELATIONS

Published online by Cambridge University Press:  22 January 2010

ROGER D. MADDUX*
Affiliation:
Department of Mathematics, Iowa State University
*
*DEPARTMENT OF MATHEMATICS, 396 CARVER HALL, IOWA STATE UNIVERSITY, AMES, IA 50011. E-mail:[email protected]

Abstract

Sound and complete semantics for classical propositional logic can be obtained by interpreting sentences as sets. Replacing sets with commuting dense binary relations produces an interpretation that turns out to be sound but not complete for R. Adding transitivity yields sound and complete semantics for RM, because all normal Sugihara matrices are representable as algebras of binary relations.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Ackermann, W. (1956). Begründung einer strengen Implikation. Journal of Symbolic Logic, 21, 113128.CrossRefGoogle Scholar
Anderson, A. R., & Belnap, N. D. Jr. (1975). Entailment. Princeton, NJ: Princeton University Press.Google Scholar
Anderson, A. R., Belnap, N. D. Jr. & Dunn, J. M. (1992). Entailment. The Logic of Relevance and Necessity. Vol. II. Princeton, NJ: Princeton University Press.Google Scholar
Andréka, H., Givant, S. R., & Németi, I. (1997). Decision problems for equational theories of relation algebras. Memoirs of the American Mathematical Society, 126(604), xiv+126.CrossRefGoogle Scholar
Belnap, N. D. Jr. (1960). Entailment and relevance. Journal of Symbolic Logic, 25, 144146.CrossRefGoogle Scholar
Bimbo, K., Dunn, J. M., & Maddux, R. D. (2009). Relevance logics and relation algebras. The Review of Symbolic Logic, 2(1), 102131.CrossRefGoogle Scholar
Brady, R. T. (editor.) (2003). Relevant Logics and Their Rivals. Volume II. Aldershot, Hants, England. Ashgate Publishing Ltd.Google Scholar
Church, A. (1951). The weak positive implicational propositional calculus. Journal of Symbolic Logic, 16(5), 238.Google Scholar
Copeland, B. J. (1979). On when a semantics is not a semantics: Some reasons for disliking the Routley-Meyer semantics for relevance logic. Journal of Philosophical Logic, 8(4), 399413.Google Scholar
De Morgan, A. (1856). On the symbols of logic, the theory of the syllogism, and in particular of the copula, and the application of the theory of probabilities to some questions in the theory of evidence. Transactions of the Cambridge Philosophical Society, 9, 79127. Reprinted in De Morgan (1966).Google Scholar
De Morgan, A. (1864a). On the syllogism: III, and on logic in general. Transactions of the Cambridge Philosophical Society, 10, 173230. Reprinted in De Morgan (1966).Google Scholar
De Morgan, A. (1864b). On the syllogism: IV, and on the logic of relations. Transactions of the Cambridge Philosophical Society, 10, 331358. Reprinted in De Morgan (1966).Google Scholar
De Morgan, A. (1966). “On the Syllogism” and Other Logical Writings. New Haven, CT: Yale University Press.Google Scholar
Došen, K. (1992). The first axiomatization of relevant logic. Journal of Philosophical Logic, 21(4), 339356.Google Scholar
Fine, K. (1974). Models for entailment. Journal of Philosophical Logic, 3, 347372.Google Scholar
Kowalski, T. (2007). Weakly associative relation algebras hold the key to the universe. Bulletin of the Section of Logic, 36(3/4), 145157.Google Scholar
Lyndon, R. C. (1961). Relation algebras and projective geometries. Michigan Math Journal, 8, 2128.Google Scholar
Maddux, R. D. (1991). The origin of relation algebras in the development and axiomatization of the calculus of relations. Studia Logica, 50(3–4), 421455.Google Scholar
Maddux, R. D. (2006). Relation Algebras, Volume 150 of Studies in Logic and Foundations of Mathematics. Amsterdam, The Netherlands: Elsevier B. V.Google Scholar
Maddux, R. D. (2007). Relevance logic and the calculus of relations [abstract]. International Conference on Order, Algebra and Logics, Vanderbilt University, June 13, 2007, pp. 1–3. Available from: www.math.vanderbilt.edu/~oa12007/submissions/submission_10.pdf.Google Scholar
Meyer, R. K., & Routley, R. (1973). Classical relevant logics. I, II. Studia Logica, 32, 5168; ibid. 33 (1974), 183–194.Google Scholar
Mikulás, S. (2009). Algebras of relations and relevance logic. Journal of Logic and Computation, 19(2), 305321.Google Scholar
Moh, S.-K. (1950). The deduction theorems and two new logical systems. Methodos, 2, 5675.Google Scholar
Peirce, C. S. (1870). Description of a notation for the logic of relatives, resulting from an amplification of the conceptions of Boole’s calculus of logic. Memoirs of the American Academy of Sciences, 9, 317378. Reprinted in Peirce (1960) and Peirce (1984).Google Scholar
Peirce, C. S. (1880). On the algebra of logic. American Journal of Mathematics, 3, 1557. Reprinted in Peirce (1960).CrossRefGoogle Scholar
Peirce, C. S. (1883). Note B: The logic of relatives. In Peirce, C. S., editor. Studies in Logic by Members of the Johns Hopkins University. Boston, MA: Little, Brown, and Co., pp. 187203. Reprinted by John Benjamins Publishing Co., Amsterdam and Philadelphia, 1983, pp. lviii, vi+203.CrossRefGoogle Scholar
Peirce, C. S. (1885). On the algebra of logic; a contribution to the philosophy of notation. American Journal of Mathematics, 7, 180202. Reprinted in Peirce (1960).Google Scholar
Peirce, C. S. (1897). The logic of relatives. The Monist, 7, 161217. Reprinted in Peirce (1960).CrossRefGoogle Scholar
Peirce, C. S. (1960). Collected Papers. Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
Peirce, C. S. (1984). Writings of Charles S. Peirce. Vol. 2 (chronological edition). Bloomington, IN: Indiana University Press.Google Scholar
Routley, R., & Meyer, R. K. (1972a). The semantics of entailment. II. Journal of Philosophical Logic, 1(1), 5373.CrossRefGoogle Scholar
Routley, R., & Meyer, R. K. (1972b). The semantics of entailment. III. Journal of Philosophical Logic, 1(2), 192208.Google Scholar
Routley, R., & Meyer, R. K. (1973). The semantics of entailment. I. In Truth, Syntax and Modality (Proc. Conf. Alternative Semantics, Temple Univ., Philadelphia, Pa., 1970), pp. 199243. Studies in Logic and the Foundations of Math., Vol. 68. Amsterdam, The Netherlands: North-Holland.Google Scholar
Routley, R., Plumwood, V., Meyer, R. K., & Brady, R. T. (1982). Relevant Logics and Their Rivals. Part I. Atascadero, CA: Ridgeview Publishing Co.Google Scholar
Routley, R., & Routley, V. (1972). The semantics of first degree entailment. Noûs, 6(4), 335359.Google Scholar
Schröder, F. W. K. E. (1966). Vorlesungen über die Algebra der Logik (exacte Logik), Volume 3, “Algebra und Logik der Relative,” Part I (second edition). Bronx, NY: Chelsea. First published by B. G. Teubner, Leipzig, 1895.Google Scholar
Sugihara, T. (1955). Strict implication free from implicational paradoxes. Memoirs of the Faculty of Liberal Arts, Series 1, no. 4, 5559.Google Scholar
Tarski, A. (1941). On the calculus of relations. Journal of Symbolic Logic, 6, 7389.Google Scholar
Tarski, A., & Givant, S. (1987). A Formalization of Set Theory Without Variables. Providence, RI: American Mathematical Society.Google Scholar
Urquhart, A. (1972). Semantics for relevant logics. Journal of Symbolic Logic, 37, 159169.Google Scholar
Urquhart, A. (1984). The undecidability of entailment and relevant implication. Journal of Symbolic Logic, 49(4), 10591073.Google Scholar
Urquhart, A. (1996). Duality for algebras of relevant logics. Studia Logica, 56(1–2), 263276.Google Scholar