Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T10:56:30.208Z Has data issue: false hasContentIssue false

FORMULAS IN MODAL LOGIC S4

Published online by Cambridge University Press:  13 September 2010

KATSUMI SASAKI*
Affiliation:
Nanzan University
*
*FACULTY OF INFORMATION SCIENCES AND ENGINEERING, NANZAN UNIVERSITY, 27 SEIREI-CHO, SETO 489-0863, JAPAN. E-mail:[email protected]

Abstract

Here, we provide a detailed description of the mutual relation of formulas with finite propositional variables p1, …, pm in modal logic S4. Our description contains more information on S4 than those given in Shehtman (1978) and Moss (2007); however, Shehtman (1978) also treated Grzegorczyk logic and Moss (2007) treated many other normal modal logics. Specifically, we construct normal forms, which behave like the principal conjunctive normal forms in the classical propositional logic. The results include finite and effective methods to find a normal form equivalent to a given formula A by clarifying the behavior of connectives and giving a finite method to list all exact models.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Bellissima, F. (1985). An effective representation for finitely generated free algebras. Algebra Universalis, 20, 302317.CrossRefGoogle Scholar
Chagrov, A., & Zakharyaschev, M. (1997). Modal Logic. New York: Oxford University Press.CrossRefGoogle Scholar
de Bruijn, N. G. (1975). Exact Finite Models for Minimal Propositional Calculus Over a Finite Alphabet. Report 75-WSK-02. Eindhoven, The Netherlands: Technological University Eindhoven.Google Scholar
Diego, A. (1966). Sur les algèbres de Hilbert. Paris: Gauthier-Villars.Google Scholar
Esakia, L., & Grigolia, R. (1975). Christmas trees. On free cyclic algebras in some varieties of closure algebras. Bulletin of the Section of Logic, 4, 95102.Google Scholar
Esakia, L., & Grigolia, R. (1977). The criterion of Brouwerian and closure algebras to be finitely generated. Bulletin of the Section of Logic, 6, 4652.Google Scholar
Fine, K. (1975). Normal forms in modal logic. Notre Dame Journal of Formal Logic, 16, 229237.CrossRefGoogle Scholar
Gentzen, G. (1934–35). Untersuchungen über das logisch Schliessen. Mathematische Zeitschrift, 39, 176210, 405–431.CrossRefGoogle Scholar
Ghilardi, S. (1995). An algebraic theory of normal forms. Annals of Pure and Applied Logic, 71, 189245.CrossRefGoogle Scholar
Hendriks, L. (1996). Computations in Propositional Logic. ILLC Dissertation Series DS-1996-01. Amsterdam, The Netherlands: Institute for Logic, Language and Computation, University of Amsterdam.Google Scholar
Moss, L. S. (2007). Finite models constructed from canonical formulas. Journal of Philosophical Logic, 36, 605640.Google Scholar
Nishimura, I. (1960). On formulas of one variable in intuitionistic propositional calculus. Journal of Symbolic Logic, 25, 327331.Google Scholar
Ohnishi, M., & Matsumoto, K. (1957). Gentzen method in modal calculi. Osaka Mathematical Journal, 9, 113130.Google Scholar
Rieger, L. (1949). On lattice of Brouwerian propositional logics. Acta Universitatis Carolinae. Mathematica et Physica, 189, 140.Google Scholar
Sasaki, K. (2001). Logics and Provability. ILLC Dissertation Series DS-2001-07. Amsterdam, The Netherlands: Institute for Logic, Language and Computation, University of Amsterdam.Google Scholar
Sasaki, K. (2005). Formulas with only one variable in Lewis logic S4. Academia Mathematical Sciences and Information Engineering, 5, 3948.Google Scholar
Sasaki, K. (2010). A Construction of an Exact Model for S4. Technical Report of the Nanzan Academic Society Information Sciences and Engineering, NANZAN-TR-2009-06. Seto, Japan: Nanzan University.Google Scholar
Shehtman, V. B. (1978) Rieger-Nishimura ladders. Doklady Akademii Nauk SSSR, 241, 12881291.Google Scholar
Urquhart, A. (1973). Free Heyting algebras. Algebras Universalis, 3, 9497.CrossRefGoogle Scholar
Urquhart, A. (1974). Implicational formulas in intuitionistic logic. The Journal of Symbolic Logic, 39, 661664.CrossRefGoogle Scholar