Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T22:50:05.294Z Has data issue: false hasContentIssue false

Pertinence of exotic and local green manures for sustainable maize polyculture in Oaxaca, Mexico

Published online by Cambridge University Press:  07 May 2020

Alexandre Beaupré*
Affiliation:
Programa de Doctorado en Ciencias y Aprovechamiento de los Recursos Naturales, Protección y producción vegetal, CIIDIR Oaxaca IPN, Oaxaca, México
Jaime Ruiz Vega
Affiliation:
Programa de Doctorado en Ciencias y Aprovechamiento de los Recursos Naturales, Protección y producción vegetal, CIIDIR Oaxaca IPN, Oaxaca, México
H. Ernesto Castañeda
Affiliation:
Programa de TecNM. ITVO. Maestría en Ciencias en productividad de agroecosistemas, Desarrollo Rural y Manejo Sustentable de Agroecosistemas, Oaxaca, México
Mariana Benítez
Affiliation:
Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, México04510, México
Emilio Mora Van Cauwelaert
Affiliation:
Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, México04510, México
Cecilia González González
Affiliation:
Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, CDMX, México04510, México
*
Author for correspondence: Alexandre Beaupré, E-mail: [email protected]

Abstract

Green manures are a promising alternative for achieving the sustainable production of maize in the face of low soil fertility and increasingly long canicule periods, particularly in rainfed systems associated with the reproduction of local agrobiodiversity. However, it is necessary to investigate what are the advantages and disadvantages associated with different species of native and exotic pulse, as well as their overall contribution to the sustainable production of maize landraces. In order to do so, we followed the MESMIS method to assess five species of pulse (three native and two exotic) grown with maize in two plots with different soil conditions. This was done in the seasons of 2017 and 2018 the municipality of Villa de Zaachila, Oaxaca, a site with remarkable biological, agricultural and cultural diversity. A fully randomized complete block design was implemented with 11 treatments and three repetitions in the two plots. The output variables of the experiment were: land equivalence ratio, interspecific aggressiveness, content of soil organic matter, decomposition rate, plant survival rate and plant dry biomass. We also evaluated quantitative or qualitative indicators of cost, adaptability and contribution to food security. For all the possible maize-pulse combinations, except for one, polyculture outperformed maize and pulse monocultures. Exotic pulses (Crotalaria junscens spp. and Dolicho lablab) had a better performance in biomass, reincorporation of organic matter and possible nitrogen fixation, as well as greater resistance to drought in the second cycle. The native pulses (Phaseolus vulgaris and Phaseolus coccineus), however, had a greater acceptance and economic output and are important for the food security in our study site. Our results provide quantitative and qualitative elements to design combined schemes of green manures associated with maize that would help tackle current challenges regarding maize productivity, food security and response to climate change.

Type
Research Paper
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adebisi, AA and Bosch, CH (2004) Lablab purpureus (L.) sweet. In Grubben, GJH and Denton, OA (eds), Plant Resources of Tropical Africa (PROTA), no. 2, Vegetables. Wageningen, The Netherlands/Backhuys, Leiden, The Netherlands/CTA, Wageningen, The Netherlands: PROTA Foundation, pp. 343348.Google Scholar
Altieri, MA (1999) The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems and Environment 74, 1931.CrossRefGoogle Scholar
Altieri, MA (2002) Agroecología: principios y estrategias para diseñar sistemas agrarios sustentables. In Sarandon, SJ (ed.), Agroecología: el camino hacia la agricultura sustentable. Catarroja, Spain: Ediciones Científicas Americanas, pp. 2734.Google Scholar
Altieri, MA, Nicholls, CI and Montalba, R (2017) Technological approaches to sustainable agriculture at a crossroads: an agroecological perspective. Sustainability 9, 349.CrossRefGoogle Scholar
Anna John, S and Mini, C (2005) Biological efficiency of intercropping in okra (Abelmoschus esculentus (L.) Moench). Journal of Tropical Agriculture 43, 3336.Google Scholar
Astier, M, Maass, JM, Etchevers-Barra, JD, Pena, JJ and Leon Gonzalez, F (2006) Short-term green manure and tillage management effects on maize yield and soil quality in an Andisol. Soil and Tillage Research 88, 153159.CrossRefGoogle Scholar
Astier, M, Masera, O and Galván-Miyoshi, Y (eds) (2008) Evaluación de sustentabilidad. Un enfoque dinámico y multidimensional. La Plata, Argentina: SEAE/CIGA/ECOSUR/CIEco/UNAM/GIRA/ Mundiprensa/Fundación Instituto de Agricultura Ecológica y Sustentable.Google Scholar
Astier, M, García-Barrios, L, Galván-Miyoshi, Y, González-Esquivel, C and Masera, O (2012) Assessing the sustainability of small farmer natural resource management systems. A critical analysis of the MESMIS program (1995–2010). Ecology and Society 17, 25.CrossRefGoogle Scholar
Bautista-Martínez, E (1998) El maíz en Oaxaca: las cosechas de las contradicciones. Oaxaca, México: Estudios Agrarios, UABJO.Google Scholar
Blanckaert, I, Vancraeynest, K, Swennen, RL, Espinosa-García, F, Piñero-Dalmau, D and Lira-Saade, R (2007) Non–crop resources and the role of indigenous knowledge in their management in semi–arid crop production systems in Mexico. Agriculture, Ecosystems and Environment 119, 3948.CrossRefGoogle Scholar
Bunch, R (2012) Restoring the Soil. A Guide for Using Green Manure Cover Crops to Improve the Food Security of Smallholder Farmers. Winnipeg, Canada: Canadian Foodgrains Bank.Google Scholar
Ceccon, E (2008) La revolución verde: tragedia en dos actos. Ciencias 91, 2029.Google Scholar
Cedric, K (2014) Use of green manure legume cover crops in smallholder maize production systems in Limpopo province, South Africa. African Journal of Soil Science. International Scholars Journals 2, 6367.Google Scholar
CEMDA (2016) Informe sobre la pertinencia biocultural de la legislación mexicana y su política pública para el campo. El caso del programa de “Modernización Sustentable de la Agricultura Tradicional” (MasAgro). Centro Mexicano de Derecho Ambiental, A.C. Mexico.Google Scholar
CIAT (2006) Lablab purpureus. Una leguminosa multipropósito. Mexico: CIAT.Google Scholar
Cruz-Ruiz, MA (2009) Eficiencia relativa de la tierra y perspectivas de dos policultivos de temporal en Santa Cruz Xoxocotlán, Oaxaca (Doctoral dissertation). IPN. CIIDIR.Google Scholar
Ebel, R, Pozas-Cárdenas, JG, Soria-Miranda, F and Cruz González, J (2017) Manejo orgánico de la milpa: rendimientos de maíz, frijol y calabaza en monocultivo y policultivo. Terra Latinoamericana 35, 149160.CrossRefGoogle Scholar
FAO (2015) Estado mundial del recurso suelo. Roma Italia: Resumen técnico.Google Scholar
FAO (2016) México y la FAO. Contribuyendo a la seguridad alimentaria a través del fortalecimiento de políticas públicas.Google Scholar
Faure-Alvarez, B, Benítez-Gonzalez, R, Rodríguez-Acosta, E, Grande-Morales, O, Torres-Martinez, M and Pérez-Rodríguez, P (2014) Guía técnica para la producción de frijol común y maíz. Instituto de Investigaciones en Fruticultura Tropical 22. La Habana, Cuba.Google Scholar
Fuentes-Aguilar, L and López Huebe, R (1979) Tipología agrícola del valle central de Oaxaca. Investigaciones geográficas 9, 209253.Google Scholar
García-Barrios, L, Galván-Miyoshi, Y, Valdivieso-Pérez, IA, Masera, O, Bocco, J and Vandermeer, J (2009) Neotropical forest conservation, agricultural intensification, and rural out-migration: the Mexican experience. BioScience 59, 863887.CrossRefGoogle Scholar
García-Hernández, JL, Murillo- Amador, B, Nieto-Garibay, A, Fortis-Hernández, M, Márquez- Hernández, C, Castellanos-Pérez, E, García, M, Álvarez, M and Treto, E (2002) Estudio comparativo de diferentes especies de abonos verdes y su influencia en el cultivo del maíz. Cultivos Tropicales 23, 1930.Google Scholar
García-Hernández, JL, Murillo-Amador, B, Nieto-Garibay, A, Fortis-Hernández, M, Márquez-Hernández, C, Castellanos-Pérez, E, Quiñones- Vera, JJ and Avila-Serrano, NY (2010) Avances en investigación y perspectivas del aprovechamiento de los abonos verdes en la agricultura. Terra Latinoamericana 28, 391399.Google Scholar
González-González, C (2018) Caracterización de la diversidad de coleópteros como indicadora de tipos de manejo agrícola contratantes en la Villa de Zaachila, Oaxaca. México: Maestría en Ciencias Biológicas.Google Scholar
Gonzalez-Gonzalez, C, García, TL, Jardón-Barbolla, LO and Benítez, M (2020) Linking coleopteran diversity with agricultural management of maize agroecosystems in Oaxaca, Mexico. bioRxiv. https://doi.org/10.1101/2020.01.07.897744.CrossRefGoogle Scholar
Gonzalez, CG (2004) Trade Liberalization, Food Security and the Environment: The Neoliberal Threat to Sustainable Rural Development. Seattle. USA.Google Scholar
Guzmán-Sebastián, KC, Velasco-Velasco, VA, Ruíz-Luna, J, Campos-Ángeles, GV, Rodríguez-Ortiz, G and Enríquez del Valle, JR (2016) Productos agroalimentarios comercializados en la “Plaza” de la Villa de Zaachila, Oaxaca. México. Revista Mexicana de Ciencias Agrícolas 7, 871883.CrossRefGoogle Scholar
INEGI (2007) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Villa de Zaachila, Oaxaca Clave geoestadística 20565.Google Scholar
INIFAP (2015 a) Agenda Técnica Agrícola de Oaxaca. Maíz- Valles Centrales, pp. 117124.Google Scholar
INIFAP (2015 b) Agenda Técnica Agrícola de Oaxaca. Frijol de temporal- Valles Centrales, pp. 3946.Google Scholar
Karyoti, A, Bartzialis, D, Sakellariou-Makrantonaki, M and Danalatos, N (2018) Effects of irrigation and green manure on corn (Zea mays L.) biomass and grain yield. Journal of Soil Science and Plant Nutrition 18, 820832.Google Scholar
Li, Y (2012) Crotalaria Juncea. Soil and Water Science Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. USA.Google Scholar
Massawe, PI, Mtei, KM, Munishi, LK and Ndakidemi, PA (2016) Improving soil fertility and crops yield through maize-legumes (common bean and Dolichos lablab) intercropping systems. Journal of Agricultural Science 8, 148163.CrossRefGoogle Scholar
Mora-Van Cauwelaert, E (2017) Diagnóstico del movimiento comercial del maíz y de las razones económicas y culturales-simbólicas para la siembra del maíz criollo en la Villa de Zaachila, Oaxaca: un enfoque desde las familias campesinas (Master Dissertation). Universidad Internacional de Andalucía.Google Scholar
Murphy, AM and Colucci, PE (1999) A tropical forage solution to poor quality ruminant diets: a review of Lablab purpureus. Livestock Research for Rural Development 11, 1999.Google Scholar
Murray-Tortarolo, G, Jaramillo, VJ and Larsen, J (2018) Food security and climate change food security and climate change: the case of rainfed maize production in Mexico. Agricultural and Forest Meteorology 253–254, 124131.CrossRefGoogle Scholar
Muruoka, T, Ambrosano, EJ, Zapata, F, Bortoletto, N, Martins, ALM, Trivelin, PCO, Boaretto, AE and Scivittaro, WB (2001) Eficiencia de abonos verdes (crotalaria y mucuna) y urea, aplicados solos o juntamente, como fuentes de N para el cultivo de arroz. Terra 20, 1723.Google Scholar
Nabel, M, Schrey, SD, Temperton, VM, Harrison, L and Jablonowski, ND (2018) Legume intercropping with the bioenergy crop Sida hermaphrodita on marginal soil. Frontiers in plant science 9, 905.CrossRefGoogle ScholarPubMed
Nicholls-Estrada, CI, Ríos Osorio, LA and Altieri, MA (2013) Agroecología y resiliencia socioecológica: adaptándose al cambio climático. Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED), Madrid (España) Red Iberoamericana de Agroecología para el Desarrollo de Sistemas Agrícolas Resilientes al Cambio Climático (REDAGRES) 9.Google Scholar
Ortiz, JC and Sánchez de Prager, M (2016) Dinámica de la materia orgánica en el suelo propiciada por los campesinos mediante prácticas agroecológicas. Leisa, Revista de Agroecología 32, 312.Google Scholar
Ramirez Cordova, AL, Espinosa Paz, N, Espinosa Paz, H, Ariza Flores, R, Martinez Sanchez, J and Maldonado María, H (2017) Vigor de semillas de variedades criollas de maíz de los Valles Centrales de Oaxaca, bajo déficit hídrico. Sociedad Mexicana de fitogenética, A.C. Acta Fitogenética 4, 17.Google Scholar
R Core Team (2014) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at http://www.R-project.org/.Google Scholar
Robinson, W (1927) The determination of organic matter in soils by means of hydrogen peroxide. Journal of Agricultural Research 34, 339356.Google Scholar
Ruiz-Vega, J (1998) Agroecological zoning of rainfed maize in the Central Valleys of Oaxaca. I. Yield potential determination. Terra Latinoamericana. Sociedad Mexicana de la Ciencia del Suelo, A.C. Chapingo, México 16, 269275.Google Scholar
Ruiz-Vega, J and Loaeza, G (2003) Evaluación de abonos verdes en asociación con maíz de temporal en los Valles de Oaxaca, México. Terra latinoamericana. Sociedad Mexicana de la Ciencia del Suelo, Chapingo 21, 409415.Google Scholar
Ruiz-Vega, J and Silva Rivera, ME (1999) Zonificación agroecológica del maíz de temporal en los Valles Centrales de Oaxaca II. Determinación de las prácticas de producción adecuadas. Terra Latinoamericana. Sociedad Mexicana de la Ciencia del Suelo, A.C. Chapingo, México 17, 512.Google Scholar
Ruiz-Vega, J, Nuñez-Barrios, A and Ruiz, MA (2010) Decomposition rates of green manure crops in Oaxaca, México. Anadolu Journal of Agricultural Sciences 25(S-3), 212216.Google Scholar
Ruiz Espinoza, FH, Marrero Labrador, P, Cruz La Paz, O, Beltrán Morales, A and Díaz Viruliche, L (2007) Métodos de labranza e incorporación de frijol dolichos (Lablab Purpúreos, Sweet.) como abono verde en la producción de semillas de albahaca (Ocimum basilicum L.) en un Yermosol Háplico. Universidad Agraria de La Habana Fructuoso Rodríguez Pérez. La Habana, Cuba. Revista Ciencias Técnicas Agropecuarias 16, 9094.Google Scholar
SAGARPA (2016) Frijol mexicano. Planeación Agrícola nacional 2017–2030.Google Scholar
Sain, G and Buckles, D (1998) An Economic Analysis of the Abonera Maize Production System in the Atlantic Coast of Honduras. Mexico: Economics, CIMMYT.Google Scholar
Sakala, WD (2012) The potential of green manures to increase soil fertility and maize yields in Malawi. Biological Agricultural & Horticulture. An International Journal for Sustainable Production Systems 21, 121130.Google Scholar
Sarandón, SJ and Flores, CC (2009) Evaluación de la sustentabilidad en agroecosistemas: una propuesta metodológica. Agroecología 4, 1928.Google Scholar
Sircely, J and Naeem, S (2012) Biodiversity and ecosystem multi-functionality: observed relationships in smallholder fallows in Western Kenya. PLos One 7, 113.CrossRefGoogle ScholarPubMed
Turgut, I, Bilgili, U, Duman, A and Acikgoz, E (2005) Effect of green manuring on the yield of sweet corn. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA 25, 433438.CrossRefGoogle Scholar
Urrutia, AL, Gonzalez-Gonzalez, C, Van Cauwelaert, EM, Rosell, JA, Barrios, LG and Keinrad, MB (2020) Landscape heterogeneity of peasant-managed agricultural matrices. Cold Spring Harbor Laboratory. Ecosystems & Environment 292.CrossRefGoogle Scholar
Val, V, Rosset, P, Lomel, CZ, Giraldo, OF and Rocheleau, D (2019) Agroecology and La Via Campesina I. The symbolic and material construction of agroecology through the dispositive of “peasant-to-peasant” processes. Agroecology and Sustainable Food Systems 43, 872894.CrossRefGoogle Scholar
Vargas-Vásquez, P, Muruaga- Martínez, JS, Martínez-Villareal, SE, Ruiz Salazar, R, Hernandez- Delgado, S and Mayek- Pérez, N (2011) Diversidad morfológica del frijol ayocote del Carso Huasteco de México. Taxonomía y sistemática. Revista Mexicana de Biodiversidad 82, 715.Google Scholar
Vásquez, V and Nuño Romero, R (1995) Evaluación del temporal en los Valles Centrales de Oaxaca (Master Dissertation). Universidad Autónoma de Chapingo.Google Scholar
Yilmaz, S, Atak, M and Erayman, M (2008) Identification of advantages of maize legume intercropping over solitary cropping through competition indices in the East Mediterranean Region. Turkish Journal of Agriculture and Forestry 32, 111119.Google Scholar