Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T08:52:30.666Z Has data issue: false hasContentIssue false

Biology and non-chemical management of Spermacoce verticillata and Spermacoce densiflora

Published online by Cambridge University Press:  01 September 2021

Juliana Castilho
Affiliation:
Departament of Natural Resource and Environmental Protection / Program in Agriculture and Environment, Federal University of São Carlos, Araras, SP, Brazil
Victor Augusto Forti
Affiliation:
Department of Agroindustrial Technology and Rural Socioeconomic, Federal University of São Carlos, Araras, SP, Brazil
Patricia Andrea Monquero*
Affiliation:
Departament of Natural Resource and Environmental Protection / Program in Agriculture and Environment, Federal University of São Carlos, Araras, SP, Brazil
*
Author for correspondence: Patricia Andrea Monquero, E-mail: [email protected]

Abstract

The weed species Spermacoce densiflora DC. and Spermacoce verticillata L. have shown an increase in their occurrence in cultivated areas in the northeast region of Brazil, and field observations have reported their ineffective control with chemicals. This study aimed to evaluate the germination of S. densiflora and S. verticillata under constant (15, 20, 25, 30 and 35°C) and alternating temperatures (20–30°C) in dark and in constant light; the emergence of seedlings from seven sowing depths (0, 0.5, 1, 2, 4, 6 and 10 cm); the emergence of seedlings under five types of cover crop straw (Crotalaria juncea L., Pennisetum glaucum (L.) R. Br., Sorghum bicolor (L.) Moench, Dolichos lablab L., and Cajanus cajan L.) and four amounts (nil and the average, half and twice the amount of straw produced in the field); and germination at different aqueous cover crop extract concentrations (0, 20, 40, 60 and 100%) to measure allelopathic potential of cover crop straw. The results showed that S. densiflora has positive photoblastic behavior. The alternating temperature provided the highest percentage of germination and germination speed index (GSI) for both species. S. densiflora and S. verticillata seedling emergence decreased with an increase in depth, with no germination at a depth of 10 cm. The presence of straw impaired the emergence of seedlings of S. densiflora and S. verticillata by delaying and even preventing germination from occurring. The gradual increase in the aqueous extract concentrations was accompanied by lower percentages of germination and GSI for S. densiflora and S. verticillata.

Type
Research Paper
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adegas, FS, Vargas, L, Gazziero, DL and Karam, D. (2017) Impacto econômico da resistência de plantas daninhas a herbicidas no Brasil. Londrina: Embrapa Soja, 11p.Google Scholar
Alberguini, AL and Yamashita, OM (2010) Sowing depth and presence of straw affect emergence of Vernonia ferruginea seedling. Planta Daninha 28, 10051013.CrossRefGoogle Scholar
Amaral-Baroli, A and Takaki, M (2001) Phytochrome controls achene germination in Bidens pilosa L. (Asteraceae) by very low fluence response. Brazilian Archives of Biology and Technology 44, 121124.CrossRefGoogle Scholar
Amini, R, Mobli, A and Ghanepour, S (2015) Effect of environmental factors on seed germination and emergence of Lepidium vesicarium. Plant Species Biology 31, 178187.CrossRefGoogle Scholar
Araldi, DA, Yamashita, OM, Carvalho, MAC, Campos, OR, Roque, CG and Dallacort, R (2015) Efeito da profundidade de semeadura e presença de palha sobre o substrato na emergência de Crotalaria juncea. Ambiência 12, 525538.Google Scholar
Borges, WLB, Freita, RS, Mateus, GP, , ME and Alves, MC (2014) Supressão de plantas daninhas utilizando plantas de cobertura do solo. Planta daninha 4, 755763.CrossRefGoogle Scholar
Brasil (2009) Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Regras para análise de sementes.Google Scholar
Brighenti, AM and Oliveira, MF (2011) Biologia de plantas daninhas. In Oliveira, JRRS, Constantin, J and Inoue, MH (eds), Biologia e manejo de plantas daninhas. Curitiba, PR: Omnipax, pp. 136.Google Scholar
Brighenti, AM, Castro, CD, Gazziero, DLP, Adegas, FS and Voll, E (2003) Cadastramento fitossociológico de plantas daninhas na cultura de girassol. Pesquisa Agropecuária Brasileira 38, 651657.CrossRefGoogle Scholar
Cabral, EL, Miguel, LM and Salas, RM (2011) Dos especies nuevas de Borreria (Rubiaceae), sinopsis y clave de las especies para Bahia, Brasil. Acta Botanica Brasilica 25, 255276.CrossRefGoogle Scholar
Cardoso, EDA, Alves, EU, Bruno, RDLA, Alves, AU and Silva, KB (2008) Emergência de plântulas de Erythrina velutina em diferentes posições e profundidades de semeadura. Ciência Rural 38, 26182621.CrossRefGoogle Scholar
Carvalho, ND and Nakagawa, J (2012) Sementes ciência, tecnologia e produção. Campinas: Fundação Cargill.Google Scholar
Christoffoleti, PJ, Victoria Filho, R and Silva, CBD (1994) Resistência de plantas daninhas aos herbicidas. Planta Daninha 12, 1320.CrossRefGoogle Scholar
Correia, NM and Durigan, JC (2004) Emergência de plantas daninhas em solo coberto com palha de cana-de-açúcar. Planta Daninha 22, 1117.CrossRefGoogle Scholar
Correia, NM, Durigan, JC and Klink, UP (2006) Influência do tipo e da quantidade de resíduos vegetais na emergência de plantas daninhas. Planta Daninha 24, 245253.CrossRefGoogle Scholar
Fadin, DA and Monquero, PA (2019) Leaf characterization of ‘Spermacoce verticillata‘ at three stages of development. Australian Journal of Crop Science 13, 792797.CrossRefGoogle Scholar
Febrapdp (2019). Federação Brasileira de Plantio Direto na Palha. Available at https://febrapdp.org.br/historico.Google Scholar
Fonseca, SCL and Perez, CJGDA. (2003) Ação do polietileno glicol na germinação de sementes de Adenanthera pavonina L. e o uso de poliaminas na atenuação do estresse hídrico sob diferentes temperaturas. Revista Brasileira de sementes 25, 16.CrossRefGoogle Scholar
Garagorry, F, De Miranda, EE and Magalhães, L (2014) MATOPIBA: Quadro Agrícola. Embrapa Territorial-Outras publicações técnicas (INFOTECA-E).Google Scholar
Gatti, AB, Perez, SCJGD and Lima, MIS (2004) Atividade alelopática de extratos aquosos de Aristolochia esperanzae O. Kuntze na germinação e no crescimento de Lactuca sativa L. e Raphanus sativus L. Acta Botanica Brasilica 18, 459472.CrossRefGoogle Scholar
Guedes, RS, Alves, EU, Gonçalves, EP, Viana, JS, Moura, MF and Costa, EG (2010) Emergência e vigor de plântulas de Amburana cearensis (Allemão) AC Smith em função da posição e da profundidade de semeadura. Semina: Ciências Agrárias 31, 843850.Google Scholar
Heap, I (2019). The international survey of herbicide resistant weeds. Available at http://www.weedscience.com.Google Scholar
Hoffmann, CEF, Das Neves, LAS, Bastos, CF and Da Luz Wallau, G (2007) Atividade alelopática de Nerium Oleander L. e Dieffenbachia picta Schott em sementes de Lactuca Sativa L. e Bidens pilosa L. Revista de Ciências Agroveterinárias 6, 1121.Google Scholar
IBGE (2020) Censo Agropecuário 2017. Brasil, Grandes Regiões e Unidades da Federação. Ministério do Planejamento, Orçamento e Gestão/IBGE.Google Scholar
Iqbal, N, Manalil, S, Chauhan, BS and Adkins, SW (2019) Germination biology of Sesbania (Sesbania cannabina): an emerging weed in the Australian cotton agro-environment. Weed Science 67, 6876.CrossRefGoogle Scholar
Loddo, D, Carlesi, S and Pais da Cunha, AT (2019). Germination of Chloris barbata, Cynodon dactylon, and Cyperus rotundus from Angola at constant and alternate temperatures. Agronomy 9, 615.CrossRefGoogle Scholar
Macedo, JF, Brandão, M and Lara, JFR (2003) Plantas daninhas na pós-colheita de milho nas várzeas do rio São Francisco, em Minas Gerais. Planta Daninha 21, 239248.CrossRefGoogle Scholar
Maguire, JD (1962) Speed of germination—Aid in selection and evaluation for seedling emergence and vigor. Crop science 2, 176177.CrossRefGoogle Scholar
Mahmood, AH, Florentine, SK, Chauchan, BS, Maclaren, DA, Palmer, GC and Wright, W (2016) Influence of various environmental factors on seed germination ande seedling emergence of a noxious environmental weed: green galenia. Weed Science 64, 486494.CrossRefGoogle Scholar
Marques, LJP, Silva, MRM, Araujo, MS, Lopes, GS, Corrêa, MJP, Freitas, ACR and Muniz, FH (2010) Composição florística de plantas daninhas na dultura do feijão-caupi no sistema de capoeira triturada. Planta Daninha 28, 953961.CrossRefGoogle Scholar
Martins, BAB, Cabral, EL, Souza, VC and Christoffoleti, PJ (2009) A new variety of the weed Borreria densiflora DC. (Rubiaceae). Weed Biology and Management 9, 286291.CrossRefGoogle Scholar
Martins, D, Gonçalves, CG, Silva Junior, AC (2016) Winter mulches and chemical control on weed in maize. Revista Ciência Agronômica 47, 649657.CrossRefGoogle Scholar
Mascarenhas, REB, Modesto, Junior MS, Dutra, S and Souza, Filho APS (1999) Plantas daninhas de uma pastagem cultivada de baixa produtividade no nordeste paraense. Planta daninha 3, 399418.CrossRefGoogle Scholar
Mondo, VHV, Carvalho, SJPD, Dias, ACR and Marcos Filho, J (2010) Efeitos da luz e temperatura na germinação de sementes de quatro espécies de plantas daninhas do gênero Digitaria. Revista Brasileira de sementes 32, 131137.CrossRefGoogle Scholar
Nepomuceno, FÁA, Souza, EBD, Nepomuceno, IV, Miguel, LM, Cabral, EL and Loiola, MIB (2018) O gênero Borreria (Spermacoceae, Rubiaceae) no estado do Ceará, Brasil. Rodriguésia 69, 715731.CrossRefGoogle Scholar
Nosratti, I, Amiri, S, Bagheri, A and Chauhan, BS (2018) Environmental factors affecting seed germination and seedling emergence of foxtail sophora (Sophora alopecuroides). Weed Science 66, 7177.CrossRefGoogle Scholar
Nosratti, I, Almaleki, S and Chauhan, BS (2019) Seed germination ecology of soldier thistle (Picnomon acarna): an invasive weed of rainfed crops in Iran. Weed Science 67, 261266.CrossRefGoogle Scholar
Ozaki, Y, Shimono, Y and Tominaga, T (2018) Germination characteristics of Sagittaria trifolia. Weed Biology and Management 18, 160166.CrossRefGoogle Scholar
Pereira, MRR, Teixeira, RN, Souza, GSF, Silva, JIC and Martins, D (2011) Inibição do desenvolvimento inicial de plantas de girassol, milho e triticale por palhada de capim-colchão. Planta daninha 29, 305310.CrossRefGoogle Scholar
Pons, TL (2000) Seed responses to light. In Fenner, M (ed.), Seeds: The Ecology of Regeneration in Plant Communities. London: CABI, pp. 237260.CrossRefGoogle Scholar
Probert, RJ (2000) The role of temperature in the regulation of seed dormancy and germination. In Fenner, M (ed.), Seeds: The Ecology of Regeneration in Plant Communities. London: CABI, pp. 261292.CrossRefGoogle Scholar
Roder, W, Maniphone, S and Keoboulapha, B (1998). Pigeon pea for fallow improvement in slash–burn systems in the hills of Laos? Agroforestry Systems 39, 4557.CrossRefGoogle Scholar
RStudio Team. 2016. RStudio: Integrated Development for R. Boston, MA: RStudio, Inc. Available at http://www.rstudio.com.Google Scholar
Sage, RF and Kubien, DS (2003) Quo vadis C 4? An ecophysiological perspective on global change and the future of C 4 plants. Photosynthesis Research 77, 209225.CrossRefGoogle Scholar
Santana, DGD, Anastácio, MR, Lima, JAD and Mattos, MBD (2010) Germinação de sementes e emergência de plântulas de pau-santo: uma análise crítica do uso de correlação. Revista Brasileira de Sementes 32, 134140.CrossRefGoogle Scholar
Santos, WF, Procopio, DDO, Silva, AG, Fernandes, MF and Barroso, ALL (2016) Weed phytosociological and floristic survey in agricultural areas of southwestern Goiás region. Planta Daninha 34, 6580.Google Scholar
Schutte, BJ, Tomasek, BJ, Davis, AS, Andersson, L, Benoit, DL, Cirujeda, A and Murdoch, AJ (2014) An investigation to enhance understanding of the stimulation of weed seedling emergence by soil disturbance. Weed Research 54, 112.CrossRefGoogle Scholar
Silva, LMDM, Rodrigues, TDJD and Aguiar, IBD (2002) The effect of light and temperature on the germination of Myracrodruon urundeuva Allemão. Revista árvore 26, 691697.CrossRefGoogle Scholar
Silva Neto, HF, De Pauli, FA, Júnior, LCT and Marques, MO (2018) Quantificação da palhada de cana-de-açúcar e potencial controle de plantas daninhas. Revista Trópica: Ciências Agrárias e Biológicas 10, 3137.Google Scholar
Trezzi, MM, Vidal, RA, Mattei, D, Silva, HL, Carnieleto, CE, Gustmann, MS and Machado, A (2006) Efeitos de resíduos da parte aérea de sorgo, milho e aveia na emergência e no desenvolvimento de plântulas de leiteiro (Euphorbia heterophylla) resistentes a inibidores da ALS. Planta Daninha 24, 443450.CrossRefGoogle Scholar
Vargas, LA, Passos, AMA and Karam, D (2018) Allelopathic potential of cover crops in control of shrubby false buttonweed (Spermacoce verticillata). Planta Daninha 36, 18.CrossRefGoogle Scholar
Varjão, RR, Jardim, JG and Conceição, ADS (2013) Rubiaceae Juss. de caatinga na APA Serra Branca/Raso da Catarina, Bahia, Brasil. Biota Neotropica 13, 105123.CrossRefGoogle Scholar
Vincent-Caboud, L, Casagrande, M, David, C, Ryan, MR, Silva, EM and Peigne, J (2019) Using mulch from cover crops to facilitate organic no-till soybean and maize production. A review. Agronomy for Sustainable Development 39, 45.CrossRefGoogle Scholar
Weller, SL, Florentine, SK and Chauhan, BS (2019) Influence of selected environmental factors on seed germination and seedling emergence of Dinebra panicea var. brachiata (Steud.). Crop Protection 117, 121127.CrossRefGoogle Scholar
Zhang, Z, Gao, PL, Dai, WM, Song, XL, Feng, HU and Qiang, S (2019) Effect of tillage and burial depth and density of seed on viability and seedling emergence of weedy rice. Journal of Integrative Agriculture 18, 19141923.CrossRefGoogle Scholar