Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T03:27:47.276Z Has data issue: false hasContentIssue false

Energy self-reliance, net-energy production and GHG emissions in Danish organic cash crop farms

Published online by Cambridge University Press:  25 February 2008

N. Halberg*
Affiliation:
Department of Agroecology, University of Aarhus, PO Box 50, DK 8830 Tjele, Denmark.
R. Dalgaard
Affiliation:
Department of Agroecology, University of Aarhus, PO Box 50, DK 8830 Tjele, Denmark.
J.E. Olesen
Affiliation:
Department of Agroecology, University of Aarhus, PO Box 50, DK 8830 Tjele, Denmark.
T. Dalgaard
Affiliation:
Department of Agroecology, University of Aarhus, PO Box 50, DK 8830 Tjele, Denmark.
*
*Corresponding author: [email protected]

Abstract

Organic farming (OF) principles include the idea of reducing dependence of fossil fuels, but little has been achieved on this objective so far in Danish OF. Energy use and greenhouse gas (GHG) emissions from an average 39 ha cash crop farm were calculated and alternative crop rotations for bio-energy production were modeled. Growing rapeseed on 10% of the land could produce bio-diesel to replace 50–60% of the tractor diesel used on the farm. Increasing grass-clover area to 20% of the land and using half of this yield for biogas production could change the cash crop farm to a net energy producer, and reduce GHG emissions while reducing the overall output of products only marginally. Increasing grass-clover area would improve the nutrient management on the farm and eliminate dependence on conventional pig slurry if the biogas residues were returned to cash crop fields.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., and de Haan, C. 2006. Livestock's long shadow. Environmental issues and options. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
Ney, R.A. and Schnoor, J.L. 2002. Incremental life cycle analysis: using uncertainty analysis to frame greenhouse gas balances from bioenergy systems for emission trading. Biomass and Bioenergy 22:257269.CrossRefGoogle Scholar
Heller, M.C., Keoleian, G.A., and Volk, T.A. 2003. Life cycle assessment of willow bioenergy cropping system. Biomass and Bioenergy 25:147165.CrossRefGoogle Scholar
Jørgensen, U., Dalgaard, T., and Kristensen, E.S. 2005. Biomass energy in organic farming—the potential role of short rotation coppice. Biomass and Bioenergy 28:237248.CrossRefGoogle Scholar
Hanegraf, M.C., Biewinga, E.E., and Van der Bijl, G. 1998. Assessing the ecological and economic sustainability of energy crops. Biomass and Bioenergy 15(4/5):345355.CrossRefGoogle Scholar
Kim, S. and Dale, B.E. 2005. Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel. Biomass and Bioenergy 29:426439.CrossRefGoogle Scholar
European Environment Agency. 2006. How much bioenergy can Europe produce without harming the environment? EEA Report 7, p. 67.Google Scholar
Dabbert, S., Häring, A.M., and Zanoli, R. 2004. Organic Farming: Policies and Prospects. Zed Books, London and New York.Google Scholar
Scialabba, N.E. and Hattam, C. (eds). 2002. Organic agriculture, environment and food security. Environment and Natural Resources Service Sustainable Development Department. FAO, Rome.Google Scholar
10 Stoltze, M., Priorr, A., Häring, A., and Dabbert, S. 2000. The environmental impact of organic farming in Europe. In Organic Farming in Europe: Economics and Policy, vol. 6. University of Hohenheim, Germany.Google Scholar
11 Hansen, B., Kristensen, E.S., Grand, R., Høgh-Jensen, H., Simmelsgaard, S.E., and Olesen, J.E. 2000. Nitrogen leaching from conventional versus organic farming systems—a systems modelling approach. European Journal of Agronomy 13:6582.CrossRefGoogle Scholar
12 Woodward, L. and Vogtman, H. 2004. IFOAM's organic principles. IFOAM. Ecology and Farming, May–August 2004, 2426.Google Scholar
13 Pimentel, D., Berardi, G., and Fast, S. 1983. Energy efficiency of farming systems: organic and conventional agriculture. Agriculture, Ecosystems and Environment 9(4):359372.CrossRefGoogle Scholar
14 Refsgaard, K., Halberg, N., and Kristensen, E.S. 1998. Energy utilization in crop and dairy production in organic and conventional livestock production systems. Agricultural Systems 57(4):599630.CrossRefGoogle Scholar
15 Dalgaard, T., Halberg, N., and Porter, J.R. 2001. A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agriculture, Ecosystems and Environment 87(1):5165.CrossRefGoogle Scholar
16 Gündoğmuş, E. 2006. Energy use on organic farming: a comparative analysis on organic versus conventional apricot production on small holdings in Turkey. Energy Conversion and Management 47(18–19):33513359.CrossRefGoogle Scholar
17 Grönroos, J., Seppälä, J., Voutilainen, P., Seuri, P., and Koikkalainen, K. 2006. Energy use in conventional and organic milk and rye bread production in Finland. Agriculture, Ecosystems and Environment 117:109118.CrossRefGoogle Scholar
18 Fredriksson, H., Baky, A., Bernesson, S., Nordberg, Å., Norén, O., and Hansson, P.-A. 2006. Use of on-farm produced biofuels on organic farms—evaluation of energy balances and environmental loads for three possible fuels. Agricultural Systems 89:184203.CrossRefGoogle Scholar
19 Jørgensen, U. and Dalgaard, T. 2004. Energi i økologisk jordbrug. Reduktion af fossilt energiforbrug og produktion af vedvarende energi. [Energy in organic farming. Reduction of fossil energy use and production of bio-energy.] FØJO-rapport 19, p. 165. Available at Web site http://www.foejo.dk/publikation/rapport/Rap_19.pdfGoogle Scholar
20 Dalgaard, R., Halberg, N., Kristensen, I.S., and Larsen, I. 2006. Modelling representative and coherent Danish farm types based on farm accountancy data for use in environmental assessments. Agriculture, Ecosystems and Environment 117:223237.CrossRefGoogle Scholar
21 Kristensen, I.S., Halberg, N., Nielsen, A.H., and Dalgaard, R. 2005. N-turnover on Danish mixed dairy farms. Part II. In Bos, J., Pflimlin, A., Aarts, F., and Vertés, F. (eds) Nutrient Management on Farm Scale. How to attain policy objectives in regions with intensive dairy farming. Report of the first workshop of the EGF Workshop. Plant Research International 83: 91109. Available at Web site http://www.nitrogenworkshop.org/PDF/Rapport_83_drukversie.pdf (verified 1 March 2006).Google Scholar
22 Halberg, N., Kristensen, E.S., and Kristensen, I.S. 1995. Nitrogen turnover on organic and conventional mixed farms. Journal of Agriculture and Environmental Ethics 8(1):3051.CrossRefGoogle Scholar
23 Andersen, J.M., Sommer, S.G., Hutchings, N.J., Kristensen, V.F., and Poulsen, H.D. 1999. Emission af ammoniak fra landbruget—status og kilder. Ammoniakfordampning—redegørelse nr. 1. Danmarks JordbrugsForskning, p. 63.Google Scholar
24 Vinther, F.P. and Hansen, S. 2004. SimDen—en simpel model til kvantificering af N2O-emission og denitrifikation. DJF rapport Markbrug 104. Danish Institute of Agricultural Sciences.Google Scholar
25 IPCC. 2000. Good practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Chapter 4. Agriculture, p. 4.1–4.83. IPCC. Available at Web site http://www.ipcc-nggip.iges.or.jp/public/gp/english/ (verified 3 January 2007).Google Scholar
26 Møller, J., Thøgersen, R., Kjeldsen, A.M., Weisbjerg, M.R., Søegaard, K., Hvelplund, T., and Børsting, C.F. 2000. Fodermiddeltabel. Sammensætning og foderværdi af fodermidler til kvæg. Rapport nr. 91. Landbrugets Rådgivningscenter.Google Scholar
27 Petersen, B.M. and Berntsen, J. 2003. The turnover of soil organic matter on different farm types. DARCOF.eNews. September 2003. Available at Web site http://www.darcof.dk/enews/sep03/orgmat.html.Google Scholar
28 Knudsen, M.T., Kristensen, I.S., Berntsen, J., Petersen, B.M., and Kristensen, E.S. 2006. Estimated N leaching losses for organic and conventional farming in Denmark. Journal of Agricultural Science 144:135149.CrossRefGoogle Scholar
29 Halberg, N. and Kristensen, I.S. 1997. Expected crop yield loss when converting to organic dairy farming in Denmark. Biological Agriculture and Horticulture 14(1):2541.CrossRefGoogle Scholar
30 Kristensen, I.S. 1999. Forudsætninger for planteproduktion på forskellige bedriftstyper. [Conditions for cash crop production in different farm types.] In I.A. Rasmussen (ed.). Workshop: ‘Plantebeskyttelse i økologisk jordbrug’ [Plant protection in organic farming.] Forskningscenter Flakkebjerg, 9 December 1998. FØJO-rapport 4, p. 2940. Available at Web site http://www.foejo.dk/publikation/rapport/Rap_04.pdfGoogle Scholar
31 Rasmussen, I.A., Askegaard, M., Olesen, J.E., and Kristensen, K. 2006. Effects on weeds of management in newly converted organic crop rotations in Denmark. Agriculture, Ecosystems and Environment 113:184195.CrossRefGoogle Scholar
32 Ansø, N. and Bugge, J. 2001. Pure plant oil: clean engine fuel today and tomorrow. Sustainable Energy News 34:1416. Available at Web site http://www.folkecenter.net/default.asp?id=9189Google Scholar
33 Ferchau, E. 2000. Equipment for decentralised cold pressing of oil seeds. Nordvestjysk Folkecenter for Vedvarende Energi, p. 64.Google Scholar
34 Lunderskov, M. 2004. Hjemmepressede rapskager til økologiske køer. [Home pressed rape seed cakes for organic cows.] Report from grass-roots experiments. Available at Web site http://www.eksperimenter.dk/eksperimenter/faktasider/xrapsko.htmlGoogle Scholar
35 Bjerg, J. 2000. Anvendelse af rapsolie i oliefyr. [Use of rapeseed oil for energy.] Report from Force technology. Available at Web site http://www.videncenter.dk/videnblade-dok/vb-156.htmGoogle Scholar
36 Anonymous. 2000. The RK-Standard for vegetable oils as fuel. Available at Web site http://www.folkecenter.dk/plant-oil/images/RK-standard-UK.gifGoogle Scholar
37 Sommer, S.G., Møller, H.B., and Petersen, S.O. 2001. Reduktion af drivhusgasemission fra gylle og organisk affald ved biogasbehandling. DJF rapport Husdyrbrug 31, p. 53.Google Scholar
38 DS/EN ISO 14044. 2006. Environmental Management—Life Cycle Assessment, Requirements and Guidelines. European Committee for Standardization, Brussels. ICS 13.020.60. 46pp.Google Scholar
39 Wenzel, H., Hauschild, M., and Alting, L. 1997. Environmental Assessments of Products—Volume 1: Methodology, Tools and Case Studies in Product Development. Chapman and Hall, London.CrossRefGoogle Scholar
40 Nielsen, P.H., Nielsen, A.M., Weidema, B.P., Dalgaard, R., and Halberg, N. 2003. LCA food database. Available at Web site http://www.lcafood.dk (verified December 2004).Google Scholar
41 Berntsen, J., Petersen, B.M., Jacobsen, B.H., Olesen, J.E., and Hutchings, N.J. 2003. Evaluating nitrogen taxation scenarios using the dynamic whole farm simulation model FASSET. Agricultural Systems 76:817839.CrossRefGoogle Scholar
42 Dalgaard, R., Olesen, J.E., Halberg, N., and Berntsen, J. 2004. Miljøeffekter og energibalancer ved energiproduktion på økologiske planteavlsbedrifter. In U. Jørgensen, and T. Dalgaard. Energi i økologisk jordbrug. Reduktion af fossilt energiforbrug og produktion af vedvarende energi. [Energy in organic farming. Reduction of fossil energy use and production of bio-energy.] FØJO-rapport 19, p. 103123. Available at Web site http://orgprints.org/4674/Google Scholar