Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T00:48:33.086Z Has data issue: false hasContentIssue false

Monte Carlo simulation of a proton therapy beamline forintracranial treatments

Published online by Cambridge University Press:  19 March 2013

R. Sayah
Affiliation:
IRSN, Laboratoire de Dosimétrie des Rayonnements Ionisants, PRP-HOM/SDE/LDRI - BP17, 92262 Fontenay-aux-Roses Cedex, France
L. Donadille
Affiliation:
IRSN, Laboratoire de Dosimétrie des Rayonnements Ionisants, PRP-HOM/SDE/LDRI - BP17, 92262 Fontenay-aux-Roses Cedex, France
A. Aubé
Affiliation:
IRSN, Laboratoire de Dosimétrie des Rayonnements Ionisants, PRP-HOM/SDE/LDRI - BP17, 92262 Fontenay-aux-Roses Cedex, France
J. Hérault
Affiliation:
Centre Antoine Lacassagne (CAL) - Cyclotron biomédical, 227 avenue de la Lanterne, 06200 Nice, France
S. Delacroix
Affiliation:
Institut Curie – Centre de Protonthérapie d’Orsay (ICPO) - Campus universitaire bâtiment 101, 91898 Orsay, France
L. De Marzi
Affiliation:
Institut Curie – Centre de Protonthérapie d’Orsay (ICPO) - Campus universitaire bâtiment 101, 91898 Orsay, France
F. Stichelbaut
Affiliation:
IBA, 1348 Louvain-la-Neuve, Belgium
I. Clairand
Affiliation:
IRSN, Laboratoire de Dosimétrie des Rayonnements Ionisants, PRP-HOM/SDE/LDRI - BP17, 92262 Fontenay-aux-Roses Cedex, France
Get access

Abstract

A radiation transport code based on a Monte Carlo tool is used to simulate a protontherapy beamline designed to treat paediatric patients with intracranial tumours. Thetreatments are performed using the IBA gantry at the Proton Therapy Centre of the InstitutCurie. The treatment is undertaken at 178.16 MeV using the double scattering technique.The aim of this study is to present the Monte Carlo model of the transported proton beam,beamline and treatment room, as well as the experimental validation of the proton dosedistributions calculated by this model. The beamline components and the treatment room areaccurately modelled using the Monte Carlo code MCNPX. The proton source at the beamlineentrance is defined on the basis of IBA data, measurements and calculations. Measured andcalculated relative proton dose distributions in a water phantom are compared for thevalidation. Depth dose profiles, including pristine Bragg peaks and a spread–out Braggpeak, and lateral dose profiles are studied. A general good agreement was found betweencalculated and measured distributions with discrepancies of less than 2 mm. Relativeproton dose distributions are therefore considered to be correctly described by oursimulated geometry and proton source parameters. The Monte Carlo simulation will be usedsubsequently for radiation protection purposes: calculation of secondary neutron dosesreceived by treated patients of different ages.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agosteo, S., Birattari, C., Caravaggio, M., Silari, M., Tosi, G. (1998) Secondary neutron and photon dose in proton therapy, Radiother. Oncol. 48, 293-305.Google ScholarPubMed
Bertini, H.W. (1968) Intranuclear-cascade calculation of the secondary nucleon spectra for nucleon-nucleus interactions, Phys. Rev. 188, 1711-1720. Google Scholar
Bonnet, D.E. (1993) Current developments in proton therapy: a review, Phys. Med. Biol. 38, 1393-1401.Google Scholar
Chadwick M.B., Young P.G., MacFarlane R.E., Moller P., Hale G.M., Little R.C., Koning A.J., Chiba S. (1999) LA150 Documentation of Cross Sections, Heating, and Damage: Part A (Incident Neutrons) and Part B (Incident Protons) Los Alamos National Laboratory report LA-UR-99-1222.
Hendricks J.S., McKinney G.W., Durkee J.W., Finch J.P., Fensin M.L., James M.R., Johns R.C., Pelowitz D.B., Waters L.S. (2006) MCNPX, VERSION 26C, LA-UR-06–7991, Los Alamos National Laboratory.
Hérault, J., Iborra, N., Serrano, B., Chauvel, P. (2005) Monte Carlo simulation of a protontherapy platform devoted to ocular melanoma, Med. Phys. 32, 910-919.Google Scholar
Hérault, J., Iborra, N., Serrano, B., Chauvel, P. (2007) Spread-out Bragg peak and monitor units calculation with the Monte Carlo code MCNPX, Med. Phys. 34, 680-688.Google Scholar
IBA, 2007, Ionization chambers and diode detectors, Detectors for relative and absolute dosimetry, IBA dosimetry.
Jiang, H., Wang, B., Xu, X.G., Suit, H.D., Paganetti, H. (2005) Simulation of organ-specific patient effective dose due to secondary neutrons in proton radiation treatment, Phys. Med. Biol. 50, 4337-4353. Google Scholar
Martinetti, F., Donadille, L., Delacroix, S., Nauraye, C., De Oliveira, A., Clairand, I., Hérault, J. (2009) Monte Carlo Modelling of a protontherapy beamline dedicated to ophthalmologic treatments, Nuclear Technology 168, 721-727.Google Scholar
Newhauser, W.D., Titt, U., Dexheimer, D., Yan, X., Nill, S. (2002) Neutron shielding verification measurements and simulations for a 235 MeV proton therapy centre, Nucl. Instrum. Meth. A. 476, 80-84.Google Scholar
Newhauser, W.D., Koch, N., Hummel, S., Ziegler, M., Titt, U. (2005) Monte Carlo simulations of a nozzle for the treatment of ocular tumours with high-energy proton beams, Phys. Med. Biol. 50, 5229-5249.Google ScholarPubMed
Olsen, D.R., Bruland, O.S., Frykholm, G., Norderhaug, I.N. (2007) Proton therapy – A systematic review of clinical effectiveness, Radiother. Oncl. 83, 123-132. Google ScholarPubMed
Paganetti, H., Jiang, H., Lee, S.Y., Kooy, H.M. (2004). Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility, Med. Phys. 31, 2107-2118.Google ScholarPubMed
Paganetti, H., Jiang, H., Parodi, K., Slopsema, R., Engelsman, M. (2008) Clinical implementation of full Monte Carlo dose calculation in proton beam therapy, Phys. Med. Biol. 53, 4825-4853.Google Scholar
Perez-Andujar, A., Newhauser, W.D., DeLuca, P.M. (2009) Contribution to neutron fluence and neutron absorbed dose from double scattering proton therapy system components, Nucl. Tech. 168, 728-735.Google Scholar
Polf, J.C., Harvey, M.C., Titt, U., Newhauser, W.D., Smith, A.R. (2007) Initial beam size study for passive scatter proton therapy I. Monte Carlo verification, Med. Phys. 34, 4213-4218.Google ScholarPubMed
PTCOG (2010) Particule Therapy Co‑Ordinated Group, PTCOG Publications Sub‑Committee Task Group on Shielding Design and Radiation Safety of Charged Particule Therapy Facilities, PTCOG Report 1.
Rossi, B., Greisen, K. (1941) Cosmic-ray theory, Rev. Mod. Phys. 13, 240-270. Google Scholar
Sisterson, J.M. (1995) Proton radiation therapy: a summary of the world wide experience, Nucl. Instrum. Meth. B 99827-829.Google Scholar
Stankovskiy, A., Kerhoas-Cavata, S., Ferrand, R., Nauraye, C., Demarzi, L. (2009) Monte Carlo modelling of a treatment line of Proton Therapy Center in Orsay, Phys. Med. Biol. 54, 2377-2394.Google ScholarPubMed
Vavilov, P.V. (1957) Ionizational losses of high-energy heavy particles, Sov. Phys. JETP 5, 749-751.Google Scholar
White M.C. (2002) Photoatomic Data Library MCPLIB04: A New Photoatomic Library Based on Data from ENDF/B-VI Release 8 Los Alamos National Laboratory internal memorandum X-5: MCW-02-111.
Zacharatou Jarlskog, C., Paganetti, H. (2008) Risk of developing second cancer from neutron dose in proton therapy as function of field characteristics, organ, and patient age, Int. J. Radiat. Oncol. Bio. Phys. 72, 228-235. Google ScholarPubMed
Zheng, Y., Fontenot, J., Taddei, P., Mirkovic, D., Newhauser, W. (2008) Monte Carlo simulations of neutron spectral fluence, radiation weighting factor and ambient dose equivalent for a passively scattered proton therapy unit, Phys. Med. Biol. 53, 187-201. Google ScholarPubMed