Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T08:50:41.209Z Has data issue: false hasContentIssue false

Subtle 14C Signals: The Influence of Atmospheric Mixing, Growing Season and In-Situ Production

Published online by Cambridge University Press:  18 July 2016

Pieter M. Grootes*
Affiliation:
Quaternary Isotope Laboratory AK-60, University of Washington, Seattle, Washington 98195 USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Atmospheric 14C concentrations vary with time and latitude. These variations, measured directly on atmospheric samples, or in independently-dated organic material such as tree rings, supply data essential for the calibration of dynamic models of the global carbon cycle. Short variations in the production rate of atmospheric 14C are strongly attenuated in the relatively large atmospheric CO2 reservoir. In-situ production of 14C should be negligible for ages up to 80 ka bp. Background problems in AMS dating are more likely attributable to contamination of very small samples.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Bagge, E. and Skorka, S. 1958. Der Übergangseffekt der Ultrastrahlungsneutronen an der Grenzfläche Luft-Wasser. Zeitschrift Physik 152: 3440.Google Scholar
Baxter, M. S. and Farmer, J. G. 1973 Radiocarbon: Short term variations. Earth and Planetary Science Letters 20: 295299.Google Scholar
Beer, J., Siegenthaler, U., Bonani, G., Finkel, R. C., Oeschger, H., Suter, M. and Wölfli, W. 1988 Information on past solar activity and geomagnetism from 10Be in the Camp Century ice core. Nature 331: 675679.Google Scholar
Burchuladze, A. A., Chudy, M., Eristavi, I. V., Pagava, S. V., Povinec, P., Sivo, A. and Togonidze, G. I. 1989 Anthropogenic 14C variations in atmospheric CO2 and wines. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 771776.Google Scholar
Burchuladze, A. A., Pagava, S. V., Povinec, P., Togonidze, G. I. and Usacev, S. 1980 Radiocarbon variations with the 11-year solar cycle during the last century. Nature 287: 320322.Google Scholar
Cain, W. F. and Suess, H. E. 1976 Carbon 14 in tree rings. Journal of Geophysical Research 81: 36883694.Google Scholar
Cocconi, G. and Cocconi Tongiorgi, V. 1951 Nuclear disintegrations induced by μ-mesons. Physics Reviews 84: 2932.Google Scholar
Dai, K. M. and Fan, C. Y. 1986 Bomb produced 14C content in tree rings grown in different latitudes. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International Radiocarbon Conference. Radiocarbon 28(2A): 346349.Google Scholar
Damon, P. E., Burr, G., Cain, W. J. and Donahue, D. J. 1992 Anomalous 11-year δ14C cycle at high latitudes. In Damon, P. E., Long, A. and Kra., R. S., eds., Proceedings of the Paleoastrophysics Workshop. Radiocarbon , this issue.Google Scholar
Damon, P. E., Long, A. and Wallick, E. I. 1973 On the magnitude of the 11-year radiocarbon cycle. Earth and Planetary Science Letters 20: 300306.Google Scholar
Fan, C. Y., Chen, T. M., Yun, S. X. and Dai, K. M. 1983 Radiocarbon activity variation in dated tree rings grown in Mackenzie delta. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 11th International 14C Conference. Radiocarbon 25(2): 205212.Google Scholar
Fan, C. Y., Chen, T. M., Yun, S. X. and Dai, K. M. 1986 Radiocarbon activity variation in dated tree rings grown in Mackenzie delta. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 300305.Google Scholar
Felber, H. and Hernegger, G. 1971 Über die Anreicherung von Uran in den Fossilfunden aus dem Bänderton von Baumkirchen (Inntal, Tirol). Zeitschrift für Gletscherkunde und Glazialgeologie BD VII: 3140.Google Scholar
Gold, R. 1968 Cosmic ray neutrons near sea level. Physics Review 165: 14111422.Google Scholar
Goldman, D. T., Aline, P., Sher, R. and Stehn, J. R. 1972 Twenty-two hundred meter per second neutron absorption cross sections. In Handbook of Chemistry and Physics . CRC Press: B245.Google Scholar
Grootes, P. M., Farwell, G. W., Schmidt, F. H., Leach, D. D. and Stuiver, M. 1989 Rapid response of tree cellulose radiocarbon content to changes in atmospheric 14CO2 concentration. Tellus 41B: 134148.CrossRefGoogle Scholar
Harkness, D. D. and Burleigh, R. 1974 Possible carbon-14 enrichment in high altitude wood. Archaeometry 16(2) 121127.Google Scholar
Karlén, I., Olsson, I. U., Kållberg, P. and Kilicci, S. 1964 Absolute determination of the activity of two 14C dating standards. Arkiv för Geofysik 4: 465477.Google Scholar
Kolesnikov, N. V., Gorshkova, I. A. and Biryulin, Y. F. 1970 Variation of the radiocarbon concentration in the atmosphere during the period 1957–1968 (according to dendrological data). Atmospheric and Oceanic Physics 6(6): 647649.Google Scholar
Levin, I., Kromer, B., Schoch-Fischer, H., Bruns, M., Münnich, M., Berdau, D., Vogel, J. C. and Münnich, K. O. 1985 25 years of tropospheric 14C observations in central Europe. Radiocarbon 27(1): 119.Google Scholar
Levin, I., Schuchard, J. Kromer, B. and Münnich, K. O. 1989 The continental European Suess effect. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 431440.Google Scholar
Münnich, K. O. and Roether, W. 1967 Transfer of radiocarbon and tritium from the atmosphere to the ocean. Internal mixing of the ocean on the basis of tritium and 14C profiles. In Radioactive dating and methods of low-level counting. Proceedings of IAEA/ICSU Symposium, Monaco. Vienna, IAEA: 93104.Google Scholar
Nydal, R. and Lövseth, K. 1983 Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research 88: 36213642.Google Scholar
Olsson, I. U. and Karlén, I. 1965 Uppsala radiocarbon measurements VI. Radiocarbon 7: 331335.Google Scholar
Sawelski, F. S. 1968 A further refinement of the radiocarbon dating method. Proceedings of the Academy of Sciences USSR, Geological Series B 180: 11891197.Google Scholar
Segré, E. 1952 Spontaneous fission. Physics Reviews 86: 2126.Google Scholar
Stuiver, M. and Quay, P. D. 1980 Changes in atmospheric carbon-14 attributed to a variable sun. Science 207: 1119.Google Scholar
Stuiver, M. and Quay, P. D. 1981 Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic flux variability. Earth and Planetary Science Letters 53: 349362.Google Scholar
Tauber, M. 1967 Copenhagen radiocarbon measurements VIII. Geographic variations in atmospheric 14C activity. Radiocarbon 9: 246256.Google Scholar
Willkomm, H. and Erlenkeuser, H. 1968 University of Kiel radiocarbon measurements III. Radiocarbon 10(2): 328332.CrossRefGoogle Scholar