Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T03:30:58.455Z Has data issue: false hasContentIssue false

Radiocarbon Dating of Calcined Bones: Insights from Combustion Experiments Under Natural Conditions

Published online by Cambridge University Press:  18 July 2016

Antoine Zazzo*
Affiliation:
CNRS, UMR 7209, Archéozoologie, archéobotanique: sociétés, pratiques et environnements. Muséum national d'Histoire naturelle, Dép. EGB, CP56, 55 rue Buffon, F-75005 Paris, France
Jean-François Saliège
Affiliation:
CNRS, UMR 7209, Archéozoologie, archéobotanique: sociétés, pratiques et environnements. Muséum national d'Histoire naturelle, Dép. EGB, CP56, 55 rue Buffon, F-75005 Paris, France
Matthieu Lebon
Affiliation:
CNRS, UMR 7194, Histoire naturelle de l'Homme préhistorique. Muséum national d'Histoire naturelle, Dép. préhistoire, 1 rue René Panhard, F-75013 Paris, France
Sébastien Lepetz
Affiliation:
CNRS, UMR 7209, Archéozoologie, archéobotanique: sociétés, pratiques et environnements. Muséum national d'Histoire naturelle, Dép. EGB, CP56, 55 rue Buffon, F-75005 Paris, France
Christophe Moreau
Affiliation:
LMC14, UMS 2572, CEA/Saclay, Bâtiment 450, porte 4E, 91191 Gif-sur-Yvette Cedex, France
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radiocarbon dating of the carbonate remaining in calcined bones is widely regarded as a viable alternative to date skeletal remains in situations where collagen is no longer present. However, anomalously low δ13C values measured in calcined bones prompted questions about the origin of the carbon used for dating. The goal of this study was to quantify the magnitude of carbon isotope exchange between bone carbonate and environmental CO2 for bones calcined under natural conditions. Four archaeological bones ranging in age between the Neolithic and the Medieval period were combusted on a separate open fire for up to 4 hr and subsamples of calcined bones were taken every hour. All the bones experienced a significant increase in IRSF values and decrease in carbonate content and δ13C values. 14C ages measured in the carbonate fraction of well-calcined bones indicate that 67 ± 3% to 91 ± 8% of the carbon present in bone carbonate was replaced by carbon from the atmosphere of combustion. This finding confirms previous results obtained under laboratory conditions and has serious implications for 14C dating of calcined bones found in archaeological contexts. The 14C age obtained on a calcined bone will only reflect the true age of the bone sample if the age difference between the bone and the charcoal can be neglected. Our results show also that δ13C values of calcined bones can be used to estimate the degree of C exchange and control for post-burial diagenetic alteration.

Type
Articles
Copyright
Copyright © 2012 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Brochier, JE, Thinon, M. 2003. Calcite crystals, starch grains aggregates or…POCC? Comment on “Calcite crystals inside archaeological plant tissues.” Journal of Archaeological Science 30(9):1211–4.Google Scholar
Brock, F, Higham, T, Bronk Ramsey, C. 2010. Pre-screening techniques for identification of samples suitable for radiocarbon dating of poorly preserved bones. Journal of Archaeological Science 37(4):855–65.Google Scholar
Cook, GT, Bonsall, C, Hedges, REM, McSweeney, K, Boronean, V, Pettitt, PB. 2001. A freshwater diet-derived 14C reservoir effect at the Stone Age sites in the Iron Gates Gorge. Radiocarbon 43(2A):453–60.CrossRefGoogle Scholar
Cousin, J, Chen, W, Fourmentin, M, Fertein, E, Boucher, D, Cazier, F, Nouali, H, Dewaele, D, Douay, M, Rothman, LS. 2008. Laser spectroscopic monitoring of gas emission and measurements of the 13C/12C isotope ratio in CO2 from a wood-based combustion. Journal of Quantitative Spectroscopy and Radiative Transfer 109(1):151–67.Google Scholar
Hall, G, Woodborne, S, Scholes, M. 2008. Stable carbon isotope ratios from archaeological charcoal as palaeoenvironmental indicators. Chemical Geology 247(3–4):384400.Google Scholar
Holden, JL, Phakey, PP, Clement, JG. 1995. Scanning electron microscope observations of incinerated human femoral bone: a case study. Forensic Science International 74(1–2):1728.Google Scholar
Hüls, CM, Erlenkeuser, H, Nadeau, M-J, Grootes, PM, Andersen, N. 2010. Experimental study on the origin of cremated bone apatite carbon. Radiocarbon 52(2–3):587–99.Google Scholar
Lanting, JN, Aerts-Bijma, AT, van der Plicht, J. 2001. Dating of cremated bone. Radiocarbon 43(2A):249–54.CrossRefGoogle Scholar
Lebon, M, Reiche, I, Bahain, JJ, Chadefaux, C, Moigne, AM, Fröhlich, F, Sémah, F, Schwarcz, HP, Falguères, C. 2010. New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. Journal of Archaeological Science 37(9):2265–76.Google Scholar
Lepetz, S, Van Andringa, W. 2008. Les os et le sacrifice: problème de méthode. In: Lepetz, S, Van Andringa, W, editors. Archéologie du sacrifice animal en Gaule romaine - Rituels et pratiques alimentaires. Archéologie des plantes et des animaux - II; Montagnac: Monique Mergoil éditions. p 1126.Google Scholar
Lepetz, S, Fournet, T. in press. Faire feu de tout bois… L'utilisation des os et des déjections animales comme combustible dans les thermes byzantins de Bosra (Syrie du Sud). In: Fournet, T et al., editors. 2011. Third International Balnéorient Conference. 2–6 November 2009, Damas, IFAO.Google Scholar
Lepetz, S, Van Andringa, W. 2011. Publius Vesonius Phileros vivos monumentum fecit: investigations in a sector of the Porta Nocera cemetery in Roman Pompeii. In: Carroll, M, Rempel, J, editors. Living through the Dead: Burial and Commemoration in the Classical World. Oxford: Studies in Funerary Archaeology, Oxbow Books. Volume 5. p 1033.Google Scholar
Levin, I, Naegler, T, Kromer, B, Diehl, M, Francey, R, Weller, R, Worthy, D. 2010. Observation and modelling of the global distribution and long-term trend of atmospheric 14CO2 . Tellus B 62(1):2646.Google Scholar
Munoz, O, Zazzo, A, Bortolini, E, Seguin, G, Saliège, J-F, Cleuziou, S. 2008. Reconstructing the diet of the ancient fishermen of Ra's al-Hadd and Ra's al-Jinz (Sultanate of Oman) using radiocarbon dates. In: Les Déserts d'Afrique et d'Arabie: environnement, climat et impact sur les populations. Colloque de l'Académie des sciences, Institut de France, 8–9 September, Paris.Google Scholar
Munro, LE, Longstaffe, J, White, CD. 2007. Burning and boiling of modern deer bone: effects on crystallinity and oxygen isotope composition of bioapatite phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 249(1–2):90102.Google Scholar
Olsen, J, Heinemeier, J, Bennike, P, Krause, C, Hornstrup, KM, Thrane, H. 2008. Characterisation and blind testing of radiocarbon dating of cremated bone. Journal of Archaeological Science 35(3):791800.CrossRefGoogle Scholar
Person, A, Bocherens, H, Saliège, J-F, Zeitoun, V, Gérard, M. 1995. Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis. Journal of Archaeological Science 22(2):211–21.Google Scholar
Rey, C, Collins, B, Goehl, T, Dickson, IR, Glimcher, MJ. 1989. The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy study. Calcified Tissue International 45:157–64.Google Scholar
Rogers, KD, Daniels, P. 2002. An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure. Biomaterials 23:2577–85.CrossRefGoogle Scholar
Simmons, AH. 1999. Faunal Extinction in an Island Society. New York: Kluwer Academic–Plenum Publishers.Google Scholar
Shahack-Gross, R, Ayalon, A, Goldberg, P, Goren, Y, Ofek, B, Rabinovich, R, Hovers, E. 2008. Formation processes of cemented features in karstic cave sites revealed using stable oxygen and carbon isotopic analyses: a case study at Middle Paleolithic Amud Cave, Israel. Geoarchaeology: An International Journal 23(1):4362.CrossRefGoogle Scholar
Shipman, P, Foster, G, Schoeninger, M. 1984. Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. Journal of Archaeological Science 11(4):307–25.Google Scholar
Théry-Parisot, I. 2001. Economie des combustibles au Paléolithique. Dossier de documentation archéologique, CNRS Ed. n°20.Google Scholar
Théry-Parisot, I, Costamagno, S. 2005. Propriétés combustibles des ossements. Données expérimentales et réflexions archéologiques sur leur emploi dans les sites paléolithiques. Gallia Préhistoire 47:235–54.Google Scholar
Van Strydonck, M, Boudin, M, Hoefkens, M, De Mulder, G. 2005. 14C-dating of cremated bones, why does it work? Lunula Archaeologia Protohistorica 13:310.Google Scholar
Van Strydonck, M, Boudin, M, De Mulder, G. 2010. The origin of the carbon in bone apatite of cremated bones. Radiocarbon 52(2–3):578–86.Google Scholar
Vigne, J-D, Zazzo, A, Saliège, J-F, Poplin, F, Guilaine, J, Simmons, A. 2009. Pre-Neolithic wild boar management and introduction to Cyprus more than 11,400 years ago. Proceedings of the National Academy of Sciences USA 106(38):16,1318.Google Scholar
Weiner, S, Bar-Yosef, O. 1990. States of preservation of bones from prehistoric sites in the Near East: a survey. Journal of Archaeological Science 17(2):187–96.CrossRefGoogle Scholar
Yoneda, M, Tanaka, A, Shibata, Y, Morita, M. 2002. Radiocarbon marine reservoir effect in human remains from the Kitakogane site, Hokkaido, Japan. Journal of Archaeological Science 29(5):529–36.Google Scholar
Zazzo, A, Saliège, J-F. 2011. Radiocarbon dating of biological apatites: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 310(1–2):5261.Google Scholar
Zazzo, A, Saliège, J-F, Person, A, Boucher, H. 2009. Radiocarbon dating of calcined bones: Where does the carbon come from? Radiocarbon 51(2):112.Google Scholar