Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T12:02:54.842Z Has data issue: false hasContentIssue false

Problems in the Measurement, Calibration, Analysis, and Communication of Radiocarbon Dates (With Special Reference to the Prehistory of the Aegean World)

Published online by Cambridge University Press:  18 July 2016

Malcolm H Wiener*
Affiliation:
Institute for Aegean Prehistory, 66 Vista Drive, Greenwich, Connecticut 06830–7128, USA. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radiocarbon dating encounters (1) problems of reservoir effects and regional/seasonal variation affecting the chronological reliability of measurements, (2) problems of calibration of measurements via comparison with tree segments of known dendrochronological dates, (3) problems of statistical inference with respect to the data pre- and post-calibration, and (4) problems of the analysis and communication of information to archaeologists, historians, and other interested parties. This paper considers the special characteristics of each of the problem areas indicated in order to improve communication between 14C scientists and the disciplines of archaeology, anthropology, and ancient history.

Type
Articles
Copyright
Copyright © 2012 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Arteca, RN, Poovaia, BW, Smith, OE. 1979. Changes in carbon fixation, tuberization, and growth induced by CO2 applications to the root zone of potato plants. Science 205(4412):1279–80.CrossRefGoogle Scholar
Bayliss, A, van der Plicht, J, Bronk Ramsey, C, McCormac, G, Healy, F, Whittle, A. 2011. Towards generational time-scales: the quantitative interpretation of archaeological chronologies. In: Whittle, A, Healy, F, Bayliss, A, editors. Gathering Time: Dating the Early Neolithic Enclosures of Southern Britain and Ireland. Oxford: Oxbow. p 1759.CrossRefGoogle Scholar
Bietak, M, Hölfmayer, F. 2007. Introduction: high and low chronology. In: Bietak, M, Czerny, E, editors. The Synchronisation of Civilizations in the Eastern Mediterranean in the Second Millenium B.C. III: Proceedings of the SCIEM 2000–2nd EuroConference, Vienna, 28 May–1 June 2003. Vienna: Österreichische Akademie der Wissenschaften. p 1323.Google Scholar
Bronk Ramsey, C. 2009. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(4):1023–45.CrossRefGoogle Scholar
Bruins, HJ, van der Plicht, J, Mazar, A. 2003. Response to comment on “14C dates from Tel Rehov: Iron-Age chronology, pharaohs, and Hebrew kings.” Science 302(5645):568c.CrossRefGoogle Scholar
Bruns, M, Levin, I, Münnich, KO, Hubberten, HW, Fillipakis, S. 1980. Regional sources of volcanic carbon dioxide and their influence on 14C content of present-day plant material. Radiocarbon 22(2):532–6.CrossRefGoogle Scholar
Carapezza, ML, Ricci, T, Ranaldi, M, Tarchini, L. 2009. Active degassing structures of Stromboli and variations in diffuse CO2 output related to the volcanic activity. Journal of Volcanology and Geothermal Research 182(3–4):231–45.CrossRefGoogle Scholar
Cardellini, C, Chiodini, G, Frondini, F, Giaquinto, S, Caliro, S, Parello, F. 2003. Input of deeply derived carbon dioxide in southern Apennine regional aquifers (Italy). Geophysical Research Abstracts 5:00927. URL: http://www.cosis.net/abstracts/EAE03/09927/EAE03-J-09927.pdf.Google Scholar
Chiodini, G, Frondini, F, Kerrick, DM, Rogie, J, Parello, F, Peruzzi, L, Zanzari, AR. 1999. Quantification of deep CO2 fluxes from central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chemical Geology 159(1):205–22.CrossRefGoogle Scholar
Chiodini, G, Cardellini, C, Amato, A, Boschi, E, Caliro, S, Frondini, F, Ventura, G. 2004. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophysical Research Letters 31: L07615, doi:10.1029/2004GL019480.CrossRefGoogle Scholar
Cramer, MD. 2002. Inorganic carbon utilization by root systems. In: Waisel, Y, Eshel, A, Kafkafi, U, editors. Plant Roots: The Hidden Half. New York: Marcel Dekker. p 699714.CrossRefGoogle Scholar
Dee, M. 2010. Investigating the accuracy of radiocarbon dating in Egypt: checks with samples of known age. Paper Presented at Radiocarbon Dating & Egyptian Chronology Symposium, Oxford, 17–18 March 2010.Google Scholar
Fernandes, R, Nadeau, M-J, Grootes, PM, Hüls, CM. 2011. Fishy chronologies. Paper presented at Radiocarbon and Archaeology, 6th International Symposium, Pafos, Cyprus, 10–15 April 2011.Google Scholar
Fischer, A, Heinemeier, J. 2003. Freshwater reservoir effect in 14C dates of food residue on pottery. Radiocarbon 45(3):449–66.CrossRefGoogle Scholar
Ford, CR, Wurzburger, N, Hendrick, RL, Teskey, RO. 2007. Soil DIC uptake and fixation in Pinus taeda seedlings and its C contribution to plant tissues and ectomycorrhizal fungi. Tree Physiology 27(3):375–83.CrossRefGoogle ScholarPubMed
Frezzotti, ML, Peccerillo, A, Panza, G. 2009. Carbonate metasomatism and CO2 lithosphere-asthenosphere degassing beneath the Western Mediterranean: an integrated model arising from petrological and geophysical data. Chemical Geology 262(1–2):108–20.CrossRefGoogle Scholar
Friedrich, WL, Kromer, B, Friedrich, M, Heinemeier, J, Pfeiffer, T, Talamo, S. 2009. Santorini eruption radiocarbon dated to 1627 – 1600 BC: further discussion. In: Krzyszkowska, O, editor. Cretan Offerings: Studies in Honour of Peter Warren. BSA Supplement 18. London: British School at Athens. p 293–8.Google Scholar
Gambardella, B, Cardellini, C, Chiodini, G, Frondini, F, Marini, L, Ottonello, G, Zuccolini, MV. 2004. Fluxes of deep CO2 in volcanic areas of central-southern Italy. Journal of Volcanology and Geothermal Research 136(1–2):3152.CrossRefGoogle Scholar
Geisler, G. 1963. Morphogenetic influence of (CO2 + HCO3-) on roots. Plant Physiology 38:7780.CrossRefGoogle ScholarPubMed
Glavatskaya, EV, Kovalyuh, NN, Skripkin, VV. 2011. Features of the reservoir effect formation in fluvial ecosystems of the Pripyat' and Dnieper rivers (Ukraine). Poster presented at Radiocarbon and Archaeology, 6th International Symposium, Pafos, Cyprus, 10–15 April 2011.Google Scholar
Higham, T, Anderson, A, Bronk Ramsey, C, Tompkins, C. 2005. Diet-derived variations in radiocarbon and stable isotopes: a case study from Shag River Mouth, New Zealand. Radiocarbon 47(3):367–75.CrossRefGoogle Scholar
Housley, RA, Manning, SW, Cadogan, G, Jones, RE, Hedges, REM. 1999. Radiocarbon, calibration, and the chronology of the Late Minoan IB phase. Journal of Archaeological Science 26(2):159–71.CrossRefGoogle Scholar
Imamura, M, Ozaki, H, Mitsutani, T, Niu, E, Itoh, S. 2007. Radiocarbon wiggle-matching of Japanese historical materials with a possible systematic age offset. Radiocarbon 49(2):331–7.CrossRefGoogle Scholar
Keenan, DJ. 2002. Why early-historical radiocarbon dates downwind from the Mediterranean are too early. Radiocarbon 44(1):225–37.CrossRefGoogle Scholar
Keenan, DJ. 2004. Radiocarbon dates from Iron Age Gordion are confounded. Ancient West & East 3:100–3.CrossRefGoogle Scholar
Kromer, B, Manning, SW, Kuniholm, PI, Newton, MW, Spurk, M, Levin, I. 2001. Regional 14CO2 offsets in the troposphere: magnitude, mechanisms, and consequences. Science 294(5551):2529–32.CrossRefGoogle ScholarPubMed
Kromer, B, Manning, SW, Friedrich, M, Talamo, S, Trano, N. 2010. 14C calibration in the 2nd and 1st millennia BC—Eastern Mediterranean Radiocarbon Comparison Project (EMRCP). Radiocarbon 52(3):875–86.CrossRefGoogle Scholar
Levin, I, Bösinger, R, Bonani, G, Francey, RJ, Kromer, B, Münnich, KO, Suter, M, Trivett, NBA, Wölfli, W. 1992. Radiocarbon in atmospheric carbon dioxide and methane: global distribution and trends. In Taylor, RE, Long, AA, Kra, RS, editors. Radiocarbon after Four Decades: An Interdisciplinary Perspective. New York: Springer-Verlag. p 503–18.Google Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980.CrossRefGoogle Scholar
Manning, SW, Kromer, B, Kuniholm, PI, Newton, MW. 2001. Anatolian tree rings and a new chronology for the East Mediterranean Bronze-Iron ages. Science 294(5551):2532–5.CrossRefGoogle Scholar
Manning, SW, Bronk Ramsey, C, Kutschera, W, Higham, T, Kromer, B, Steier, P, Wild, EM. 2006a. Chronology for the Aegean Late Bronze Age 1700–1400 B.C. Science 312(5773):565–9.CrossRefGoogle ScholarPubMed
Manning, SW, Bronk Ramsey, C, Kutschera, W, Higham, T, Kromer, B, Steier, P, Wild, EM. 2006b. Supporting online material for Chronology for the Aegean Late Bronze Age 1700–1400 B.C. Science 312(5773):565. URL: http://www.sciencemag.org/cgi/content/full/312/5773/565/DC1.CrossRefGoogle Scholar
Manning, SW, Bronk Ramsey, C, Kutschera, W, Higham, T, Kromer, B, Steier, P, Wild, EM. 2009. Dating the Santorini/Thera eruption by radiocarbon: further discussion (AD 2006–2007). In: Manning, SW, Bruce, MJ, editors. Tree-Rings, Kings, and Old World Archaeology and Environment. Cornell Dendrochronology-Archaeology Conference in Honor of Peter Ian Kuniholm. Oxford: Oxbow Books. p 299316.Google Scholar
Manning, SW, Kromer, B, Bronk Ramsey, C, Pearson, CL, Talamo, S, Trano, N, Watkins, JD. 2010. 14C record and wiggle-match placement for the Anatolian (Gordion area) juniper tree-ring chronology ∼1729 to 751 cal BC, and typical Aegean/Anatolian (growing season related) regional 14C offset assessment. Radiocarbon 52(4):1571–97.CrossRefGoogle Scholar
McCormac, FG, Baillie, MGL, Pilcher, JR, Kalin, RM. 1995. Location-dependent differences in the 14C content of wood. Radiocarbon 37(2):395407.CrossRefGoogle Scholar
McCormac, FG, Hogg, AG, Blackwell, PG, Buck, CE, Higham, TFG, Reimer, PJ. 2004. SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46(3):1087–92.CrossRefGoogle Scholar
McCoy, FW, Heiken, G. 2000. The Late-Bronze Age explosive eruption of Thera (Santorini), Greece: regional and local effects. In: McCoy, FW, Heiken, G, editors. Volcanic Hazards in Human Antiquity. Geological Society of America Special Paper 345. London: Geological Society of America. p 4370.Google Scholar
Minissale, A, Magro, G, Vaselli, O, Verrucchi, C, Perticone, I. 1997. Geochemistry of water and gas discharges from the Mt. Amiata silicic complex and surrounding areas (central Italy). Journal of Volcanology and Geothermal Research 79(3–4):223–51.CrossRefGoogle Scholar
Monge Soares, AM, Matos Martins, JM, Cardoso, JL. 2011. Marine radiocarbon reservoir effect of coastal waters off Cape Verde Archipelago. Radiocarbon 53(2):289–96.Google Scholar
Mörner, N-A, Etiope, G. 2002. Carbon degassing from the lithosphere. Global and Planetary Change 33(1–2):185203.CrossRefGoogle Scholar
Ozaki, H, Imamura, M, Matsuzaki, H, Mitsutani, T. 2007. Radiocarbon in 9th to 5th century BC tree-ring samples from the Ouban 1 archaeological site, Hiroshima, Japan. Radiocarbon 49(2):473–9.CrossRefGoogle Scholar
Ozaki, H, Sakamoto, M, Imamura, M, Matsuzaki, H, Nakamura, T, Kobayashi, K, Itoh, S, Niu, E, Mitsutani, T. 2009. Radiocarbon dates of Japanese tree rings for 1060 BC–AD 400. In: Proceedings of the 20th International Radiocarbon Conference, Big Island, Hawaii, 31 May–5 June 2009, Abstracts of Papers. Google Scholar
Pain, S. 1999. Vents de Milos. New Scientist 163(2197):3841.Google Scholar
Pasquier-Cardin, A, Allard, P, Ferreira, T, Hatte, C, Coutinho, R, Fontugne, M, Jaudon, M. 1999. Magma-derived CO2 emissions recorded in 14C and 13C content of plants growing in Furnas Caldera, Azores. Journal of Volcanology and Geothermal Research 92(1–2):195208.CrossRefGoogle Scholar
Petchey, F, Clark, G, Ulm, S. 2011. Radiocarbon dating marine shells: an investigation of ΔR in the Pacific and problems encountered. Paper presented at Radiocarbon and Archaeology, 6th International Symposium, Pafos, Cyprus, 10–15 April 2011.Google Scholar
Rapp, GR, Hill, CL. 2006. Geoarchaeology: The Earth-Science Approach to Archaeological Interpretation. New Haven: Yale University Press.Google Scholar
Reddaway, JM, Bigg, GR. 1996. Climatic change over the Mediterranean and links to the more general atmospheric circulation. International Journal of Climatology 16(6):651–61.3.0.CO;2-Z>CrossRefGoogle Scholar
Reimer, PJ. 2001. A new twist in the radiocarbon tale. Science 294(5551):2494–5.CrossRefGoogle ScholarPubMed
Reimer, PJ, McCormac, FG. 2002. Marine radiocarbon reservoir corrections for the Mediterranean and Aegean seas. Radiocarbon 44(1):159–66.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Rogie, JD. 1996. Lethal Italian carbon dioxide springs key to atmospheric CO2 levels. Penn State Earth and Environmental Systems Institute. News and Events: News Archives. URL: http://www.eesi.psu.edu/news_events/archives/Lethal.shtml.Google Scholar
Rogie, JD, Kerrick, DM, Chiodini, G, Frondini, F. 2000. Flux measurements of nonvolcanic CO2 emission from some vents in central Italy. Journal of Geophysical Research 105(B4):8435–45.CrossRefGoogle Scholar
Russell, N, Cook, GT, Ascough, PL, Scott, EM, Dugmore, AJ. 2011. Examining the inherent variability in AR: new methods of presenting AR values and implications for MRE studies. Radiocarbon 53(2):277–88.CrossRefGoogle Scholar
Sakamoto, M, Fujio, S, Kobayashi, K, Ozaki, H, Imamura, M. 2009. Radiocarbon dates of Japanese tree rings for 1060 BC–AD 400. Paper presented at the 20th International Radiocarbon Conference, Big Island, Hawaii, 31 May–5 June 2009. Google Scholar
Scott, EM. 2000. Bayesian methods: What can we gain and at what cost? Radiocarbon 42(2):181.CrossRefGoogle Scholar
Scott, EM, editor. 2003. The Third International Radiocarbon Intercomparison (TIRI) and the Fourth International Radiocarbon Intercomparison (FIRI), 1990–2002: results, analyses, and conclusions. Radiocarbon 45(2):135328.Google Scholar
Shore, JS, Cook, GT, Dugmore, AJ. 1995. The 14C content of modern vegetation samples from the flanks of the Katla Volcano, southern Iceland. Radiocarbon 37(2):525–9.CrossRefGoogle Scholar
Skok, J, Chorney, W, Broeker, WS. 1962. Uptake of CO2 by roots of xanthium plants. Botanical Gazette 124(2):118–20.CrossRefGoogle Scholar
Splittstoesser, WE. 1966. Dark CO2 fixation and its role in the growth of plant tissue. Plant Physiology 41(5):755–9.CrossRefGoogle ScholarPubMed
Steier, P, Rom, W. 2000. The use of Bayesian statistics for 14C dates of chronologically ordered samples: a critical analysis. Radiocarbon 42(2):183–98.CrossRefGoogle Scholar
Sterba, JH, Foster, KP, Steinhauser, G, Bichler, M. 2009. New light on old pumice: the origins of Mediterranean volcanic material from ancient Egypt. Journal of Archaeological Science 36(8):1738–44.CrossRefGoogle Scholar
Stolwijk, JAJ, Thimann, KV. 1957. On the uptake of carbon dioxide and bicarbonate by roots and its influence on growth. Plant Physiology 32(6):513–20.CrossRefGoogle ScholarPubMed
Stuiver, M, Braziunas, TF. 1993. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. The Holocene 3(4):289305.CrossRefGoogle Scholar
Stuiver, M, Pearson, GW, Braziunas, TF. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. IntCal98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.CrossRefGoogle Scholar
Sveinbjörnsdóttir, ÁE, Heinemeier, J. 2011. The controversy of the settlement time of Iceland. Paper presented at Radiocarbon and Archaeology, 6th International Symposium, Pafos, Cyprus, 10–15 April 2011.Google Scholar
Talma, AS, Vogel, JC. 1993. A simplified approach to calibrating 14C dates. Radiocarbon 35(2):317–22.CrossRefGoogle Scholar
Taylor, RE. 1997. Radiocarbon dating. In: Taylor, RE, Aitken, MJ, editors. Chronometric Dating in Archaeology. Advances in Archaeological and Museum Science 2. New York: Plenum Press. p 6596.Google Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Achaeometry 20(1):1931.CrossRefGoogle Scholar
Wiener, MH. 2007. Times change: the current state of the debate in Old World chronology. In: Bietak, M, Czerny, E, editors. The Synchronisation of Civilisations in the Eastern Mediterranean in the Second Millennium B.C. III. Proceedings of the SCIEM 2000–2nd EuroConference, Vienna, 28 May–1 June 2003. Vienna: Verlag der Österreichischen Akademie der Wissenschaften. p 2547.Google Scholar
Wiener, MH. 2010. A point in time. In: Krzyszkowska, O, editor. Cretan Offerings: Studies in Honour of Peter Warren. BSA Supplement 18. London: British School at Athens. p 367–94.Google Scholar
Wiener, MH, Allen, JP. 1998. Separate lives: the Ahmose Tempest Stela and the Theran eruption. Journal of Near Eastern Studies 57(1):128.CrossRefGoogle Scholar
Yorgalevitch, CM, Janes, WH. 1988. Carbon dioxide enrichment of the root zone of tomato seedlings. Journal of Horticultural Science 63:265–70.Google Scholar