Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:14:29.277Z Has data issue: false hasContentIssue false

Methodological Implications of New Radiocarbon Dates from the Early Holocene Site of Körtik Tepe, Southeast Anatolia

Published online by Cambridge University Press:  18 July 2016

Marion Benz*
Affiliation:
Department of Near Eastern Archaeology, Albert-Ludwigs-University, 79085 Freiburg, Germany
Aytaç Coşkun
Affiliation:
Dicle Üniversitesi, Edebiyat Fakültesi, Arkeoloji Bölümü, 21280 Diyarbakır, Turkey
Irka Hajdas
Affiliation:
Ion Beam Physics, ETH Zürich, 8093 Zürich, Switzerland
Katleen Deckers
Affiliation:
Institute for Archaeological Science, Eberhard-Karls-University, 72070 Tübingen, Germany
Simone Riehl
Affiliation:
Institute for Archaeological Science, Eberhard-Karls-University, 72070 Tübingen, Germany Senckenberg Center for Human Evolution and Palaeoecology, Tübingen, Germany
Kurt W Alt
Affiliation:
Institute of Anthropology, Johannes-Gutenberg-University, 55099 Mainz, Germany
Bernhard Weninger
Affiliation:
Institute of Prehistoric Archaeology, Radiocarbon Laboratory, University of Cologne, 50923 Cologne, Germany
Vecihi Özkaya
Affiliation:
Dicle Üniversitesi, Edebiyat Fakültesi, Arkeoloji Bölümü, 21280 Diyarbakır, Turkey
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One of the greatest challenges of contemporary archaeology is to synthesize the large amount of radiocarbon and archaeological data into a useful dialogue. For the late Epipaleolithic and the Early Neolithic of the Near East, many 14C ages have been published without precise stratigraphic documentation. Consequently, for archaeological age models we often must use some more elementary approaches, such as probabilistic summation of calibrated ages. The stratigraphy of Körtik Tepe allows us for the first time to study an extended series of 14C ages of the earliest Holocene. In particular, we are able to analyze the data according to stratigraphic position within a well-documented profile. However, because of a plateau in the 14C age calibration curve at the transition from the Younger Dryas to the Early Holocene, dates of this period can be interpreted only if an extended sequence of dates is available. Due to problems remaining in the calibration procedure, the best way to achieve an interpretation is to compare the results of different 14C calibration software. In the present paper, we use the results of the calibration programs OxCal and CalPal. This approach has important implications for future age modeling, in particular for the question of how to date the transition from the Epipaleolithic to the PPNA precisely and accurately.

Type
Articles
Copyright
Copyright © 2012 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Arbuckle, BS, Özkaya, V. 2006. Animal exploitation at Körtik Tepe: an early aceramic site in southeastern Turkey. Paléorient 32(2):113–36.CrossRefGoogle Scholar
Andersen, KK, Svensson, A, Johnsen, S, Rasmussen, SO, Bigler, M, Röthlisberger, R, Ruth, U, Siggaard-Andersen, M-L, Steffensen, JP, Dahl-Jensen, D, Vinther, BM, Clausen, HB. 2006. The Greenland Ice Core Chronology 2005, 15–42 ka. Part 1: constructing the time scale. Quaternary Science Reviews 25(23–24):3246–57.CrossRefGoogle Scholar
Aurenche, O, Galet, P, Régagnon-Caroline, E, Évin, J. 2001. Proto-Neolithic and Neolithic cultures in the Middle East—the birth of agriculture, livestock raising, and ceramics: a calibrated 14C chronology 12,500–5500 cal BC. Radiocarbon 43(3):1191–202.CrossRefGoogle Scholar
Bayes, T. 1763. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London 53:370418.Google Scholar
Bayliss, A. 2009. Rolling out revolution: using radiocarbon dating in archaeology. Radiocarbon 51(1):123–48.CrossRefGoogle Scholar
Benz, M. 2000. Die Neolithisierung im Vorderen Orient. Studies in Near Eastern Production, Subsistence, and Environment 7. Berlin: Ex Oriente. 260 p.Google Scholar
Benz, M, Coşkun, A, Weninger, B, Alt, KW, Özkaya, V. 2011. Stratigraphy and radiocarbon dates of the PPNA site of Körtik Tepe, Diyarbakır. Arkeometri Sonuçları Toplantısı 26:81100.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.CrossRefGoogle Scholar
Bronk Ramsey, C. 2000. Comment on ‘The Use of Bayesian Statistics for 14C Dates of Chronologically Ordered Samples: A Critical Analysis.’ Radiocarbon 42(2):199202.CrossRefGoogle Scholar
Bronk Ramsey, C. 2005. Improving the resolution of radiocarbon dating by statistical analysis. In: Levy, TE, Higham, TFG, editors. The Bible and Radiocarbon Dating: Archaeology, Text and Science. London: Equinox. p 5764.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.CrossRefGoogle Scholar
Bronk Ramsey, C, van der Plicht, J, Weninger, B. 2001. ‘Wiggle matching’ radiocarbon dates. Radiocarbon 43(2A):381–90.CrossRefGoogle Scholar
Buck, CE, Cavanagh, WG, Litton, CD. 1996. Bayesian Approach to Interpreting Archaeological Data. Chichester: Wiley. 402 p.Google Scholar
Coşkun, A, Benz, M, Özkaya, V. 2010. Körtik Tepe [WWW document]. URL: http://www.exoriente.org/associated_projects/ppnd_site.php?s=81.Google Scholar
Denaire, A. 2009. Radiocarbon dating of the western European Neolithic: comparison of the dates on bones and dates on charcoals. Radiocarbon 51(2):567–74.CrossRefGoogle Scholar
Edwards, P, Meadows, J, Sayej, G, Westaway, M. 2004. From the PPNA to the PPNB: new views from the Southern Levant after excavations at Zahrat adh-Dhra' 2 in Jordan. Palèorient 30(2):2160.CrossRefGoogle Scholar
Évin, J, Stordeur, D. 2008. Chronostratigraphie de Mureybet. Apport des datations radiocarbone. In: Ibáñez, JJ, editor. Le site néolithique de Tell Mureybet (Syrie du Nord) 1. British Archaeological Reports. International series 1843 (II) Oxford: Archaeopress. p 2430.Google Scholar
Finlayson, B, Mithen, SJ, editors. 2007. The Early Prehistory of Wadi Faynan, Southern Jordan. Wadi Faynan Series 1. Levant Supplementary Series 4. Oxford: Oxbow. 600 p.Google Scholar
Greenland Ice-Core Project (GRIP) Members. 1993. Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364(6434):203–7.Google Scholar
Hajdas, I. 2009. Application of radiocarbon dating method. Radiocarbon 51(1):7990.CrossRefGoogle Scholar
Horejs, B, Weninger, B. 2012. Zur Radiocarbondatierung des frühen und späten Chalkolithikums am Çukurici Höyük. In: Horejs, B, editor. Çukuriçi Höyük 1. Erste Ergebnisse zum frühen und späten Chalkolithikum. Vienna.Google Scholar
Otte, M, Yalçınkaya, I, Léotard, J-M, López Bayón, I, Bar-Yosef, O, Kartal, M. 1998. Öküzini: un site de chasseurs epipaléolithiques en Anatolie. In: Otte, M, editor. Préhistoire d'Anatolie, genèse de deux mondes. Études et Recherches Archéologiques de l'Université de Liège 85(2). Liège: Université de Liège. p 531–49.Google Scholar
Özkaya, V, Coşkun, A, Benz, M, Erdal, YS, Atici, L, Şahin, FS. 2011. Körtik Tepe 2010 Kazısı. Kazı Sonuçları Toplantısı 33(1):315–63.Google Scholar
Pearson, GW. 1986. Precise calendrical dating of known growth-period samples using a ‘curve fitting’ technique. Radiocarbon 28(2A):292–9.CrossRefGoogle Scholar
Perrot, J. 2000. Réflexions sur l'état des recherches concernant la préhistoire récente du Proche et du Moyen-Orient. Paléorient 26(1):527.CrossRefGoogle Scholar
Rasmussen, SO, Andersen, KK, Svensson, AM, Steffensen, JP, Vinther, BM, Clausen, HB, Siggaard-Andersen, ML, Johnsen, SJ, Larsen, LB, Dahl-Jensen, ND, Bigler, M, Röthlisberger, R, Fischer, H, Goto-Azuma, K, Hansson, ME, Ruth, U. 2006. A new Greenland ice core chronology for the last glacial termination. Journal Geophysical Research 111(D6): doi:10.1029/2005JD006079.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.CrossRefGoogle Scholar
Riehl, S, Benz, M, Conard, NJ, Darabi, H, Deckers, K, Fazeli Nashli, H, Zeidi-Kulehparcheh, M. 2012. Plant use in three Pre-Pottery Neolithic sites of the northern and eastern Fertile Crescent: a preliminary report. Vegetation History and Archaeobotany 21(2):95106.CrossRefGoogle Scholar
Steier, P, Rom, W. 2000. The use of Bayesian statistics for 14C dates of chronologically ordered samples: a critical analysis. Radiocarbon 42(2):183–98.CrossRefGoogle Scholar
Vinther, BM, Clausen, HB, Johnsen, SJ, Rasmussen, SO, Andersen, KK, Buchardt, SL, Dahl-Jensen, D, Seierstad, IK, Siggaard-Andersen, M-L, Steffensen, JP, Svensson, AM, Olsen, J, Heinemeier, J. 2006. A synchronized dating of three Greenland ice cores throughout the Holocene. Journal Geophysical Research 111: D13102, doi:10.1029/2005JD006921.CrossRefGoogle Scholar
Weninger, B. 1986. High-precision calibration of archaeological radiocarbon dates. Acta Interdisciplinaria Archaeolica 4:1153.Google Scholar
Weninger, B, Jöris, O. 2008. A 14C age calibration curve for the last 60 ka: the Greenland-Hulu U/Th timescale and its impact on understanding the Middle to Upper Paleolithic transition in Western Eurasia. Journal of Human Evolution 55(5):772–81.CrossRefGoogle ScholarPubMed
Weninger, B, Jung, R. 2009. Absolute chronology of the end of the Aegean Bronze Age. In: Deger-Jalkotzy, S, Bächle, AE, editors. LH III C Late and the Transition to the Early Iron Age. Vienna: Verlag der Österreichischen Akademie der Wissenschaften. p 373416.Google Scholar
Weninger, B, Clare, L, Rohling, EJ, Bar-Yosef, O, Böhner, U, Budja, M, Bundschuh, M, Feurdean, A, Gebel, HG, Jöris, O, Linstädter, J, Mayewski, P, Mühlenbruch, T, Reingruber, A, Rollefson, G, Schyle, D, Thissen, L, Todorova, H, Zielhofer, C. 2009. The impact of rapid climate change on prehistoric societies during the Holocene in the Eastern Mediterranean. Documenta Praehistorica 36:759.CrossRefGoogle Scholar
Weninger, F, Steier, P, Kutschera, W, Wild, EM. 2010. Robust Bayesian analysis, an attempt to improve Bayesian sequencing. Radiocarbon 52(3):962–83.CrossRefGoogle Scholar
Weninger, B, Edinborough, K, Clare, L, Jöris, O. 2011. Concepts of probability in radiocarbon analysis. Documenta Praehistorica 38:120.CrossRefGoogle Scholar