Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T15:50:33.683Z Has data issue: false hasContentIssue false

Improving the 14C Dating of Marine Shells from the Canary Islands for Constructing More Reliable and Accurate Chronologies

Published online by Cambridge University Press:  18 July 2016

José M Matos Martins*
Affiliation:
Laboratório de Radiocarbono, Instituto Superior Técnico, Polo de Loures, Campus Tecnológico e Nuclear, Estrada Nacional 10, 2686–953 Sacavém, Portugal Universidade do Algarve, Faculdade de Ciências e Tecnologia, Campus de Gambelas, 8005-139 Faro, Portugal
Alfredo Mederos Martín
Affiliation:
Departamento de Prehistoria y Arqueología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
Paulo J Cesário Portela
Affiliation:
Laboratório de Radiocarbono, Instituto Superior Técnico, Polo de Loures, Campus Tecnológico e Nuclear, Estrada Nacional 10, 2686–953 Sacavém, Portugal
António M Monge Soares
Affiliation:
Laboratório de Radiocarbono, Instituto Superior Técnico, Polo de Loures, Campus Tecnológico e Nuclear, Estrada Nacional 10, 2686–953 Sacavém, Portugal
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radiocarbon dating of closely associated marine mollusk shells and terrestrial material (charred wood or bone) collected from archaeological contexts on Tenerife and Fuerteventura islands allowed us to quantify the marine 14C reservoir effect (ΔR) around the Canary Archipelago. Coastal Fuerteventura has a positive weighted mean ΔR value of +185 ± 30 14C yr, while for Tenerife a range of negative and positive values was obtained, resulting in a ΔR weighted mean value of 0 ± 35 14C yr. These values are in accordance with the hydrodynamic system present off the Canary Islands characterized by a coastal upwelling regime that affects the eastern islands (Fuerteventura and Lanzarote) but not the other islands of the archipelago, namely Tenerife. Because of this oceanographic pattern, we recommend the extrapolation of these results to the remaining islands of the archipelago, i.e. the first value must be used for the eastern islands, while for the central and western islands the acceptable ΔR value is 0 ± 35 14C yr.

Type
Articles
Copyright
Copyright © 2012 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Acosta, P, Hernández Pérez, MS, Navarro, JF. 1975–1976. Excavaciones arqueológicas en los concheros de Arguamul, La Gomera (Islas Canarias). El Museo Canario 36–37:259–76.Google Scholar
Álvarez Delgado, J. 1947. Algunos aspectos arqueológicos de la isla del Hierro. IV. La región del Julan y sus vestigios arqueológicos. Excavaciones arqueológicas en Tenerife (Canarias). Plan Nacional 1944–1945. Comisaría General de Excavaciones Arqueológicas. Nadrid: Ministerio de Educación Nacional. Informes y Memorias 14:179–92.Google Scholar
Arco Aguilar, MC, Atienzar Armas, E. 1988. Informe sobre la primera campaña de excavaciones arqueológicas en la cueva de Las Palomas (Icod, Tenerife). Investigaciones Arqueológicas en Canarias 1:4550.Google Scholar
Arco Aguilar, MC, Arco, MM, Atienzar Armas, E, Atoche, P, Martín Oval, M, Rodríguez Martín, C, Rosario Adrián, C. 1997. Dataciones absolutas en la Prehistoria de Tenerife. In: Millares, A, Atoche, P, Lobo, M, editors. Homenaje a Celso Martín de Guzmán (1946–1994). Madrid-Las Palmas: Universidad de Las Palmas de Gran Canaria. p 6577.Google Scholar
Arco Aguilar, MC, González Hernández, C, Arco, MM, Atiénzar, E, Arco, MJ, Rosario, C. 2000. El menceyato de Icod en el poblamiento de Tenerife: D. Gaspar, Las Palomas y Los Guanches. Sobre el poblamiento y las estrategias de alimentación vegetal entre los guanches. Eres (Arqueología) 9(1):67129.Google Scholar
Barton, ED, Arístegui, J, Tett, P, Cantón, M, García-Braun, J, Hernández-León, S, Nykjaer, L, Almeida, C, Almunia, J, Ballesteros, S, Basterretxea, G, Escánez, J, Garcia-Weil, L, Hernández-Guerra, A, López-Laatzen, F, Molina, R, Montero, MF, Navarro-Pérez, E, Rodríguez, JM, van Lenning, K, Vélez, H, Wild, K. 1998. The transition zone of the Canary Current upwelling region. Progress in Oceanography 41(4):455504.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.Google Scholar
Diego Cuscoy, L. 1965. Notas arqueológicas sobre El Julán (Isla de El Hierro). Actas del V Congreso Panafricano de prehistoria y de Estudios del Cuarternario II (Santa Cruz de Tenerife) (6):4352.Google Scholar
Diffenbaugh, NS, Sloan, LC, Snyder, MA. 2003. Orbital suppression of wind-driven upwelling in the California Current at 6 ka. Paleoceanography 18:1051, doi:10.1029/2002PA000865.Google Scholar
Felber, H. 1983. Vienna Radium Institute radiocarbon dates XIII. Radiocarbon 25(3):936–43.Google Scholar
Felber, H. 1984. Vienna Radium Institute radiocarbon dates XIV. Radiocarbon 26(3):441–8.Google Scholar
Hernández Pérez, MS. 2002. El Julan (La Frontera, El Hierro, Islas Canarias). Dirección General de Patrimonio Histórico. Gobierno de Canarias. Estudios Prehispánicos 10.Google Scholar
Jiménez Sánchez, S. 1965–1966. El yacimiento arqueológico de El Junquillo en Rosita del Vicario (Barranco de la Torre, Fuerteventura). Campaña de 1945. Revista de Historia Canaria 30(149–152):1934.Google Scholar
Láiz, I, Sangrà, P, Pelegrí, JL. 2000. Variabilidad estacional del borde oriental del Giro Subtropical del Atlántico Norte. 3° Simpósio sobre a Margem Ibérica Atlântica:159–60.Google Scholar
Longin, R. 1970. Extraction du collagene des os fossils pour leur datation par la methode du Carbone 14. [These 3e cycle]. Lyon: Faculté des Sciences de l'Université de Lyon. In French.Google Scholar
Machado Yanes, MC, Arco Aguilar, MC, Vernet, JL, Ourcival, JM. 1997. Man and vegetation in northern Tenerife (Canary Islands, Spain) during the prehispanic period based on charcoal analyses. Vegetation History and Archaeobotany 6:187–95.Google Scholar
Machín, F, Hernández-Guerra, A, Pelegrí, JL. 2006. Mass fluxes in the Canary Basin. Progress in Oceanography 70(2–4):416–47.Google Scholar
Martín Socas, D, Camalich, MD, González Quintero, P, Mederos, A, Meneses, MD. 1991. Informe provisional de los trabajos arqueológicos realizados en Pozo Negro (La Antigua, Fuerteventura) y su entorno. Homenaje al Professor Dr. Telesforo Bravo II. Madrid: Universidade de la Laguna. p 383402.Google Scholar
Martín Socas, D, González Quintero, P, Camalich, MD, Meneses, MD, Mederos, A. 1992. Informe provisional de los trabajos arqueológicos realizados en Pozo Negro (La Antigua, Fuerteventura). Investigaciones Arqueológicas en Canarias 3:207–15.Google Scholar
Martín Rodriguez, E. 2000. Dataciones absolutas para los yacimientos de Risco Chimirique (Tejeda) y Playa de Aguadulce (Telde). Vegueta 5:2946.Google Scholar
Martins, JMM, Soares, AMM. 2010. The variability of the marine radiocarbon reservoir effect in southern Iberian coast. 4th IGCP 526 meeting “Risks, Resources, and Record of the Past on the Continental Shelves”, Vigo, Spain, 28 September–1 October. Abstracts, S1-4 (CD-ROM).Google Scholar
Ndeye, M. 2008. Marine reservoir ages in northern Senegal and Mauritania coastal waters. Radiocarbon 50(2):281–8.Google Scholar
Pelegrí, JL, Arístegui, J, Cana, L, González-Dávila, M, Hernández-Guerra, A, Hernández-León, S, Marrero-Díaz, A, Montero, MF, Sangrà, P, Santana-Casiano, M. 2005. Coupling between the open ocean and the coastal upwelling region off Northwest Africa: water recirculation and offshore pumping of organic matter. Journal of Marine Systems 54:337.Google Scholar
Pelegrí, JL, Marrero-Díaz, A, Ratsimandresy, AW. 2006. Nutrient irrigation of the North Atlantic. Progress in Oceanography 70(2–4):366406.Google Scholar
Reimer, RW, Reimer, PJ. 2006. Marine reservoir corrections and the calibration curve. PAGES News 14(3):12–3.Google Scholar
Reimer, PJ, McCormac, G, Moore, J, McCormick, F, Murray, EV. 2002. Marine radiocarbon reservoir corrections for the mid- to late Holocene in the eastern subpolar North Atlantic. The Holocene 12(2):129–35.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Soares, AMM. 2005. Variabilidade do “Upwelling” Costeiro durante o Holocénico nas Margens Atlânticas Ocidental e Meridional da Península Ibérica [PhD dissertation]. Faro: Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve. In Portuguese.Google Scholar
Soares, AMM, Dias, JMA. 2006. Coastal upwelling and radiocarbon—evidence for temporal fluctuations in ocean reservoir effect off Portugal during the Holocene. Radiocarbon 48(1):4560.Google Scholar
Soares, AMM, Dias, JMA. 2007. Reservoir effect of coastal waters off western and northwestern Galicia. Radiocarbon 49(2):925–36.Google Scholar
Soares, AMM, Martins, JMM. 2010. Radiocarbon dating of marine samples from Gulf of Cadiz: the reservoir effect. Quaternary International 221(1–2):912.Google Scholar
Soares, AMM, Mederos Martín, A, Martins, JMM. 2010. Correcção de datas de radiocarbono de conchas marinhas provenientes do Arquipélago das Canárias. In: Saiz Carrasco, ME, López Romero, R, Díaz-Tendero, MAC, Calvo Garcia, JC, editors. Actas del VIII Congreso Ibérico de Arqueometría (Teruel, 19–21 October 2009). Teruel: Seminario de Arqueología y Etnología Turolense. p 241–9.Google Scholar
Soares, AMM, Martins, JMM, Cardoso, JL. 2011. Marine radiocarbon reservoir effect of coastal waters off Cape Verde Archipelago. Radiocarbon 53(2):289–96.Google Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–89.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Stuiver, M, Pearson, GW, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.Google Scholar
Wooster, WS, Bakun, A, McLain, DR. 1976. The seasonal upwelling cycle along the eastern boundary of the North Atlantic. Journal of Marine Research 34(2):131–41.Google Scholar