Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T09:32:19.076Z Has data issue: false hasContentIssue false

Bayesian Spatiotemporal Analysis of Radiocarbon Dates from Eastern Fennoscandia

Published online by Cambridge University Press:  18 July 2016

Päivi Onkamo*
Affiliation:
Department of Biosciences, University of Helsinki, Finland
Juhana Kammonen
Affiliation:
Department of Biosciences, University of Helsinki, Finland
Petro Pesonen
Affiliation:
Department of Biosciences, University of Helsinki, Finland Department of Philosophy, History, Culture and Art Studies, University of Helsinki, Finland
Tarja Sundell
Affiliation:
Department of Biosciences, University of Helsinki, Finland Department of Philosophy, History, Culture and Art Studies, University of Helsinki, Finland
Elena Moltchanova
Affiliation:
Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
Markku Oinonen
Affiliation:
Finnish Museum of Natural History, Dating Laboratory, University of Helsinki, Finland
Miikka Haimila
Affiliation:
National Board of Antiquities, Helsinki, Finland
Elja Arjas
Affiliation:
Department of Mathematics and Statistics, University of Helsinki, Finland
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Archaeological phenomena, especially those that have been radiocarbon dated, can be utilized as indications of human activity and occupancy in space and time. 14C dates from archaeological contexts have been used as proxies for population history events in several recent studies (e.g. Gamble et al. 2005; Shennan and Edinborough 2007; Oinonen et al. 2010; Tallavaara et al. 2010; Pesonen et al. 2011). As a step towards a larger spatiotemporal modeling effort, we present examples of spatial distributions obtained using Bayesian methodology, analyzing all available archaeological 14C dates from the Stone Age (9000–1500 cal BC) in eastern Fennoscandia. The resulting maps follow the patterns of pioneer settlement in Finland beginning at ∼9000 cal BC and provide supporting evidence for the postulated population peak around 4000–3500 cal BC in Finland and the subsequent population decline.

Type
Articles
Copyright
Copyright © 2012 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Besag, J, York, J, Mollié, A. 1991. Bayesian image restoration, with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics 43:159.Google Scholar
Best, N, Richardson, S, Thomson, A. 2005. A comparison of Bayesian spatial models for disease mapping. Statistical Methods in Medical Research 14:3559.CrossRefGoogle ScholarPubMed
Bilancia, M, Fedespina, A. 2009. Geographical clustering of lung cancer in the province of Lecce, Italy: 1992–2001. International journal of Health Geographies 8:40, doi:10.1186/1476-072X-8-40.Google Scholar
Carpelan, C. 1999. Käännekohtia Suomen esihistoriassa aikavälillä 5100–1000 eKr. In: Fogelberg, P, editor. Pohjan poluilla. Suomalaisten juuret nykytutkimuksen mukaan. Bidrag till kännedom av Finlands natur och folk [Societas Scientarum Fennica] 153:249–80.Google Scholar
Carpelan, C. 2002. Esihistorian vuosiluvut, ajoitukset ja kronologia. In: Grünthal, R, editor. Ennen muinoin. Miten menneisyyttämme tutkitaan 180. Suomalaisen Kirjallisuuden Seura. p 1827.Google Scholar
Edgren, T. 2007. On the non-megalithic mortuary practices in Finland. In: Larsson, L, Lüth, F, Terberger, T, editors. Innovation and Continuity – Non-Megalithic Mortuary Practices in the Baltic. New Methods and Research into the Development of Stone Age Society. Bericht der Römisch-Germanischen Kommission 88. p 501–20.Google Scholar
Gamble, C, Davies, W, Pettitt, P, Hazelwood, L, Richards, M. 2005. The archaeological and genetic foundations of the European population during the Late Glacial: implications for ‘agricultural thinking.’ Cambridge Archaeological Journal 15(2):193223.Google Scholar
German, K. 2009. Early hunter-gatherer ceramics in Karelia. In: Jordan, P, Zvelebil, M, editors. Ceramics before Farming. The Dispersal of Pottery among Prehistoric Eurasian Hunter-Gatherers. University College London: London Institute of Archaeology Publications, p 255–80.Google Scholar
Halinen, P. 1999. Burial practices and the structure of societies during the Stone Age in Finland. In: Huurre, M, editor. Dig it All. Papers Dedicated to Ari Siiriäinen. Helsinki: The Finnish Antiquarian Society, the Archaeological Society of Finland, p 173–80.Google Scholar
Heikkinen, J, Högmander, H. 1994. Fully bayesian approach to image restoration with an application in biogeography. Journal of the Royal Statistical Society. Series C (Applied Statistics) 43:569–82.Google Scholar
Holmblad, P. 2010. Coastal communities on the move. House and polity interaction in southern Ostrobothnia 1500 BC–AD 1 [PhD thesis]. Umeå University.Google Scholar
Huurre, M. 1990. 9000 vuotta Suomen esihistoriaa. Keuruu: Otava.Google Scholar
Jussila, T, Kriiska, A, Rostedt, T. 2007. The Mesolithic settlement in NE Savo, Finland. Acta Archaeologica 78:143–62.Google Scholar
Karvonen, M, Moltchanova, E, Viik-Kajander, M, Moltchanov, V, Rytkönen, M, Kousa, A, Tuomilehto, J for the SPAT study group. 2002. Regional inequality in the risk of acute myocardial infarction (AMI) in Finland. Heart Drug 2:5160.Google Scholar
Kittles, RA, Perola, M, Peltonen, L, Bergen, AW, Aragon, RA, Virkkunen, M, Linnoila, M, Goldman, D, Long, JC. 1998. Dual origins of Finns revealed by Y chromosome haplotype variation. American Journal of Human Genetics 62(5):1171–9.Google Scholar
Lavento, M. 2001. Textile ceramics in Finland and on the Karelian Isthmus. Nine variations and fugue on a theme of C. F. Meinander. Suomen Muinaismuistoyh-distyksen Aikakauskirja 109. Helsinki.Google Scholar
Lunn, DJ, Thomas, A, Best, N, Spiegelhalter, D. 2000. Win-BUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 10:325–37.Google Scholar
Macklin, MG, Jones, AF, Lewin, J. 2010. River response to rapid Holocene environmental change: evidence and explanation in British catchments. Quaternary Science Reviews 29(13–14):1555–76.Google Scholar
Matiskainen, H. 1989. The chronology of the Finnish Mesolithic. In: Bonsall, C, editor. The Mesolithic in Europe. Edinburgh: John Donald, p 379–90.Google Scholar
McColl, LJ. 2008. Statistical tools for investigating contemporaneity and co-location in archaeological records [PhD thesis]. School of Mathematics and Statistics, University of Sheffield.Google Scholar
McEvoy, BP, Montgomery, GW, McRae, AF, Ripatti, S, Perola, M, Spector, TD, Cherkas, L, Ahmadi, KR, Boomsma, D, Willemsen, G, Hottenga, JJ, Pedersen, NL, Magnusson, PKE, Kyvik, KO, Christensen, K, Kaprio, J, Heikkilä, K, Palotie, A, Widen, E, Muilu, J, Syvänen, AC, Liljedahl, U, Hardiman, O, Cronin, S, Peltonen, L, Martin, NG, Visscher, PM. 2009. Geographical structure and differential natural selection among North European populations. Genome Research 19:804–14.Google Scholar
Meinander, CF. 1984. Kivikautemme väestöhistoria. Suomen väestön esihistorialliset juuret. Bidrag till kännedom av Finlands natur och folk H. [Societas Scientarum Fennica] 131:2148.Google Scholar
Mökkönen, T. 2010. Kivikautinen maanviljely Suomessa. Suomen Museo 116:538.Google Scholar
Moltchanova, E, Rytkönen, M, Kousa, A, Taskinen, O, Tuomilehto, J, Karvonen, M for the SPAT Study Group and the Finnish Childhood Diabetes Registry Group. 2004. Zinc and nitrate in the ground water and the incidence of type 1 diabetes in Finland. Diabetic Medicine 21:256–61.Google Scholar
Oinonen, M, Pesonen, P, Tallavaara, M. 2010. Archaeological radiocarbon dates for studying the population history in eastern Fennoscandia. Radiocarbon 52(2):393407.CrossRefGoogle Scholar
Ortman, SG, Varien, MD, Gripp, TL. 2007. Empirical Bayesian methods for archaeological survey data: an application from the Mesa Verde region. American Antiquity 72(2):241–72.CrossRefGoogle Scholar
Palo, JU, Ulmanen, I, Lukka, M, Ellonen, P, Sajantila, A. 2009. Genetic markers and population history: Finland revisited. European Journal of Human Genetics 17:1336–46.Google Scholar
Påsse, T, Daniels, J. 2011. Comparison between a new and an old semi-empirical Fennoscandian shore-level model. In: Proceedings of the seminar “The Sea Level Displacement and Bedrock Uplift.” Pori, Finland, 10–11 June 2010. Posiva Working Report 2011-07. p 4750.Google Scholar
Pesonen, P. 2002. Semisubterranean houses in Finland—a review. In: Ranta, H, editor. Huts and Houses. Stone Age and Early Metal Age Buildings in Finland. Helsinki: National Board of Antiquities, p 941.Google Scholar
Pesonen, P. 2005. Sarvingin salaisuus – Enon Rahakankaan varhaismesoliittinen ajoitus. Muinaistutkija 2:213.Google Scholar
Pesonen, P, Kammonen, J, Moltchanova, E, Oinonen, M, Onkamo, P. 2011. Archaeological radiocarbon dates and ancient shorelines - resources and reservoirs. Proceedings of the seminar “The Sea Level Displacement and Bedrock Uplift.” Pori, Finland, 10–11 June 2010. Posiva Working Report 2011-07. p 119–29.Google Scholar
Pesonen, P, Oinonen, M, Carpelan, C, Onkamo, P. 2012. Early Subneolithic ceramic sequences in eastern Fennoscandia—a Bayesian approach. Radiocarbon, these proceedings.Google Scholar
Pesonen, P, Simponen, L, Hertell, E, Mannermaa, K, Nyholm, M, Palm, J, Rostedt, T, Taipale, N, Tallavaara, M. Forthcoming. First man in the Eastern Finland—a preboreal site with a red ochre grave in Joensuu Rahakangas 1. In: Proceedings of the Meso 2010 Conference, Santander, Spain. Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Reyes, AV, Cooke, CA. 2011. Northern peatland initiation lagged abrupt increases in deglacial atmospheric CH4 . Proceedings of the National Academy of Sciences of the USA 108(12):4748–53.Google Scholar
Saarnisto, M. 1971. The history of Finnish lakes and Lake Ladoga. Societas Scientarum Fennica. Commentationes Physico-Mathematicae 41:371–88.Google Scholar
Salmela, E, Lappalainen, T, Fransson, I, Andersen, PM, Dahlman-Wright, K, Fiebig, A, Sistonen, P, Savontaus, ML, Schreiber, S, Kere, J, Lahermo, P. 2008. Genome-wide analysis of single nucleotide polymorphisms uncovers population structure in northern Europe. PlOS ONE 3:e3519.Google Scholar
Shennan, S, Edinborough, K. 2007. Prehistoric population history: from the Late Glacial to the Late Neolithic in Central and Northern Europe. Journal of Archaeological Science 34(8):1339–45.Google Scholar
Sims, M, Cox, T, Lewison, R. 2008. Modeling spatial patterns in fisheries bycatch: improving bycatch maps to aid fisheries management. Ecological Applications 18(3):649–61.CrossRefGoogle ScholarPubMed
Sundell, T, Heger, M, Kammonen, J, Onkamo, P. 2010. Modelling a Neolithic population bottleneck in Finland: a genetic simulation. Fennoscandia Archaeologica XXVII:319.Google Scholar
Surovell, TA, Brantingham, PJ. 2007. A note on the use of temporal frequency distributions in studies of prehistoric demography. Journal of Archaeological Science 34(11):1868–77.Google Scholar
Takala, H. 2004. The Ristola site in Lahti and the earliest postglacial settlement of south Finland [PhD thesis]. Turku University.Google Scholar
Tallavaara, M, Pesonen, P, Oinonen, M. 2010. Prehistoric population history in eastern Fennoscandia. Journal of Archaeological Science 37(2):251–60.Google Scholar
Torvinen, M. 2000. Säräisniemi 1 Ware. Fennoscandia Archaeologica 17:335.Google Scholar
Vuorinen, J. 1982. Piikivi ja Suomen kampakeraaminen piikauppa. Moniste/Helsingin yliopiston arkeologian laitos 30.Google Scholar
Weninger, B, Jöris, O. 2004. Glacial radiocarbon calibration. The CalPal Program. In: Higham, T, Bronk Ramsey, C, Owen, C, editors. Radiocarbon and Archaeology. Fourth International Symposium, St. Catherine's College, Oxford (9–14 April 2002). Oxford University School of Archaeology, p 915.Google Scholar