The three-dimensional structures of proteins are among the most valuable contributions of biophysics to the understanding of biological systems (Dickerson & Geis, 1969; Creighton, 1983). Protein structures are utilized in the description and interpretation of a wide variety of biological phenomena, including genetic regulation, enzyme mechanisms, antibody recognition, cellular energetics, and macroscopic mechanical and structural properties of molecular assemblies. Virtually all of the information currently available about the structures of proteins at atomic resolution has been obtained from diffraction studies of single crystals of proteins (Wyckoff et al, 1985). However, recently developed NMR methods are capable of determining the structures of proteins and are now being applied to a variety of systems, including proteins in solution and other non-crystalline environments that are not amenable for X-ray diffraction studies. Solid-state NMR methods are useful for proteins that undergo limited overall reorientation by virtue of their being in the crystalline solid state or integral parts of supramolecular structures that do not reorient rapidly in solution. For reviews of applications of solid-state NMR spectroscopy to biological systems see Torchia and VanderHart (1979), Griffin (1981), Oldfield et al. (1982), Opella (1982), Torchia (1982), Gauesh (1984), Torchia (1984) and Opella (1986). This review describes how solid-state NMR can be used to obtain structural information about proteins. Methods applicable to samples with macroscopic orientation are emphasized.