Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T02:17:40.921Z Has data issue: false hasContentIssue false

Proton-detected heteronuclear edited and correlated nuclear magnetic resonance and nuclear Overhauser effect in solution

Published online by Cambridge University Press:  17 March 2009

Richard H. Griffey
Affiliation:
Centre for Noninvasive Diagnosis, University of New Mexico Health Center, 900 Camino de Salud. Albuquerque, NM 87131, U.S.A.
Alfred G. Redfield
Affiliation:
Department of Biochemistry, Brandeis University Waltham, MA 02254, U.S.A.

Extract

The proton has been the nucleus of choice for NMR studies of macromolecules because it is ubiquitous; it provides the highest sensitivity; its resonances can be identified with types of amino and nucleic acids by means of experiments utilizing proton spin-spin interaction and chemical shift; and, most important, proton NMR yields distance information via the nuclear Overhauser effect (NOE). Many of these advantages are lost for larger biopolymers (molecular weight more than 15 kDa) for which the line width is considerably greater than the proton-proton spin-spin interaction. The spin-spin interaction is then useless or difficult to use for assignment; and furthermore the proton line width and the number of proton resonances both increase in proportion to the molecular weight, thereby increasing the problem of resonance overlap to an intolerable degree.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agris, P. F., Sierzputowska-Gracz, H. & Smith, C. (1986). Transfer RNA contains sites of localized positive charge: carbon NMR studies of [13C]methyl-enriched Escherichia coli and yeast tRNAPhe. Biochemistry 25, 51265131.CrossRefGoogle ScholarPubMed
Anglister, J., Frey, T. & McConnell, H. M. (1984). Magnetic resonance of a monoclonal anti-spin-label antibody. Biochemistry 23, 11381142.CrossRefGoogle Scholar
Bachovchin, W. W. (1985). Confirmation of the assignment of the low-field proton resonance of serine proteases by using specifically nitrogen-15 labeled enzyme. Proc. Nat. Acad. Sci. U.S.A. 82, 79487951.CrossRefGoogle ScholarPubMed
Bax, A., Griffey, R. H. & Hawkins, B. L. (1983). Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR. J. magn. Reson. 55, 301315.Google Scholar
Bax, A. & Lerner, L. (1986). Two-dimensional nuclear magnetic resonance spectroscopy. Science 232, 960967.CrossRefGoogle ScholarPubMed
Bax, A. & Subramanian, S. (1986). Sensitivity enhanced two-dimensional heteronuclear shift correlation NMR spectroscopy. J. magn. Reson. 67, 565569.Google Scholar
Bax, A. & Weiss, M. (1987). Simplification of two-dimensional NOE spectra of proteins by 13C labeling. J. magn. Reson. (in the Press).Google Scholar
Bax, A. & Summers, M. F. (1986). 1H and 13C Assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J. Amer. chem. Soc. 108, 20932094.CrossRefGoogle Scholar
Bendall, M. R. & Pegg, D. T. (1985). Sensitive-volume localization for in-vivo NMR using heteronuclear spin-echo pulse sequences. Magn. Reson. Med. 2, 298306.CrossRefGoogle ScholarPubMed
Bendall, M. R., Pegg, D. T. & Dodrell, D. M. (1983). Pulse sequences utilizing the correlated motion of coupled heteronuclei in the transverse plane of the doubly rotating frame. J. magn. Res. 52, 81117.Google Scholar
Bendall, M. R., Pegg, D. T., Doddrell, D. M. & Field, J. (1981). NMR of protons coupled to 13C nuclei only. J. Am. chem. Soc. 103, 934936.CrossRefGoogle Scholar
Bodenhausen, G. & Reuben, D. J. (1980). Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69, 185199.CrossRefGoogle Scholar
Bogusky, M. J., Tsang, P. & Opella, S. J. (1985). One- and two-dimensional 15N/1H NMR of filamentous phage coast proteins in solution. Biochem. biophys. Res. Commun. 127, 540545.CrossRefGoogle Scholar
Bolton, P. H. (1985). Heteronuclear relay transfer spectroscopy with proton detection. J. magn. Reson. 62, 143146.Google Scholar
Bolton, P. H. & Bodenhausen, G. (1982). Resolution enhancement in heteronuclear two-dimensional spectroscopy by realignment of coherence transfer echoes. J. magn. Reson. 46, 306308.Google Scholar
Brindle, K. M., Porteous, R. & Campbell, I. D. (1984). 1H NMR measurements of enzyme-catalyzed 15N-label exchange. J. magn. Reson. 56, 543547.Google Scholar
Brühwiler, D. & Wagner, B. (1986). Selective excitation of 1H resonances coupled to 13C, hetero COSY and relay experiments with iH detection for a protein. J. magn. Reson. 69, 546551.Google Scholar
Chan, T. & Markley, J. L. (1983). Nuclear magnetic resonance studies of two-iron-two-sulfur ferredoxins. 3. Heteronuclear (13C, 1H) two-dimensional NMR spectra, 13C peak assignments, and 13C relaxation measurements. Biochemistry 22, 59966002.CrossRefGoogle Scholar
Choi, B.-S. (1985). Dynamics of transfer RNA. Dissertation, Brandeis University(University Microfilms, Ann Arbor).Google Scholar
Cline, R. E., Fink, R. M. & Fink, M. (1959). Synthesis of 5-substituted pyrimidines via formaldehyde addition. J. Am. chem. soc. 81, 25212627.CrossRefGoogle Scholar
Cohen, J. S., Chen, C.-W. & Bax, A. (1984). Selective observation of phosphate ester protons by 1H {31P} spin-echo difference spectroscopy. J. magn. Reson. 59, 181187.Google Scholar
Connolly, B. A. & Eckstein, F. (1984). Assignment of resonances in the spectrum of d(GCAATTCC) by regiospecific labelling with oxygen-17. Biochemistry 23, 55235527.CrossRefGoogle ScholarPubMed
Dahlquist, F. W., Griffey, R. H., McIntosh, L. P., Muchmore, D. C., Oas, T. G. & Redfield, A. G. (1985). Multiple nucleus NMR spectroscopy of bacteriophage T4. lysozyme. Proc. 2nd Int. Symp. Synthesis and Applications of Isotopically Labeled Compounds (ed. Muccino, R. R.), pp. 533538. Elsevier.Google Scholar
Davis, D. R., Griffey, R. H., Yamaizumi, Z., Nishimura, S., & Poulter, C. D. (1986). 15N-Labeled tRNA. Identification of dihydrouridine in Escherkhia coli tRNAfMet, tRNALys, and tRNAPhe by 115N two-dimensional NMR. J. biol. Chem. 261, 35843587.CrossRefGoogle Scholar
Doddrell, D., Williams, D. H., Reid, D. G., Fox, K. & Waring, M. J. (1983). Application of a simple technique for the sole observation of N.M.R. resonances of protons which are directly bonded to nitrogen. J. Chem. Soc, Chem. Commun. pp.218220.Google Scholar
Emshwiller, M., Hahn, E. L. & Kaplan, D. (1960). Pulsed nuclear resonance spectroscopy. Phys. Rev. 118, 414424.CrossRefGoogle Scholar
Foxall, D. L., Cohen, J. S. & Tschudin, R. G. (1983). Selective Observation of 13C-enriched metabolites by 1H NMR. J. magn. Reson. 51, 330334.Google Scholar
Frey, M. H., Wagner, G., Vašák, M., Sorensen, O., Neuhaus, D., Wörgötter, E., Kägi, J. H. R., Ernst, R. R. & Wüthrich, K. (1985). Polypeptide-metal cluster connectivities in metallothionein 2 by novel 1H–113Cd heteronuclear two-dimensional NMR experiments. J. Am. chem. Soc. 107, 68476851.CrossRefGoogle Scholar
Griffey, R. H., Davis, D., Yamaizumi, Z., Nishimura, S., Bax, A., Hawkins, B. & Poulter, C D. (1985 a). 145N-labeled Escherichia coli tRNAf Met, tRNAGlu, tRNATyr, and tRNAPhe. Double resonance and two-dimensional NMR of N1-labeled pseudouridine. J. biol. Chem. 260, 97349741.CrossRefGoogle Scholar
Griffey, R. H., Davis, D. R., Yamaizumi, Z., Nishimura, S., Hawkins, B. L. & Poulter, C. D. (1986 a). 15N labeled tRNA. Identification of 4-thiouridine in Escherichia coli tRNA1Ser and tRNA2Tyr by 1H–15N two-dimensional NMR spectroscopy. J. biol. Chem. 261, 1207412078.CrossRefGoogle Scholar
Griffey, R. H., Jarema, M. A., Kunz, S., Rosevear, P. R. & Redfield, A. G. (1985 c). Isotopic-label-directed observation of the nuclear Overhauser effect in poorly resolved proton NMR spectra. J. Am. chem. Soc. 107, 711712.CrossRefGoogle Scholar
Griffey, R. H. & Poulter, C. D. (1983 a). Detection of the imino hydrogen bond in G-C pairs by 1H and 15N nuclear magnetic resonance spectroscopy. Tetrahedron Lett. 24, 40674070.CrossRefGoogle Scholar
Griffey, R. H. & Poulter, C. D. (1983 b). Efficient synthesis of [3–15N]uracil and [3–15N]thymine. Nucleic Acids Res. II, 64976504.CrossRefGoogle Scholar
Griffey, R. H., Poulter, C. D., Bax, A., Hawkins, B. L., Yamaizumi, Z. & Nishimura, S. (1983 b). Multiple quantum two-dimensional 1H–15N nuclear magnetic resonance spectroscopy: chemical shift correlation maps for exchangeable imino protons of Escherichia coli tRNAfMet in water. Proc. Natn. Acad. Sci. U.S.A. 80, 58955897.CrossRefGoogle Scholar
Griffey, R. H., Poulter, C. D., Yamaizumi, Z., Nishimura, S. & Hawkins, B. L. (1983 a). 1H NMR studies of nitrogen-15-labeled Escherichia coli tRNAfMet. Assignments of imino resonances for uridine-related bases by 1H–15N hetero-nuclear double resonance difference spectroscopy. J. Am. chem. Soc. 105, 143145.CrossRefGoogle Scholar
Griffey, R. H., Poulter, C. D., Yamaizumi, Z., Nishimura, S. & Hurd, R. E. (1982 a). 1H NMR studies of 15N-labeled Escherichia coli tRNAfMet. Use of 1J 1H–15N couplings to identify imino resonances of uridine-related bases. J. Am. Chem. Soc. 104, 58105811.CrossRefGoogle Scholar
Griffey, R. H., Poulter, C. D., Yamaizumi, Z., Nishimura, S. & Hurd, R. E. (1982 b) 1H NMR studies of 15N-labeled Escherichia coli tRNAfMet. An unambiguous assignment for the G-U pair and detection of a uridine resonance at 11.4 ppm. J. Am. chem. Soc. 104, 58115813.CrossRefGoogle Scholar
Griffey, R. H. & Redfield, A. G. (1985). Identification of isotope-labeled resonances in two-dimensional proton-proton correlation and exchange spectroscopy with gated heteronuclear decoupling. J. magn. Reson. 65, 344347.Google Scholar
Griffey, R. H., Redfield, A. G., Loomis, R. E. & Dahlquist, F. W. (1985 b). Nuclear magnetic resonance observation and dynamics of specific amide protons in T4 lysozyme. Biochemistry 24, 817822.CrossRefGoogle ScholarPubMed
Griffey, R. H., Redfield, A. G., McIntosh, L., Oas, T. & Dahlquist, F. W. (1986 b). Assignment of proton amide resonances of T4 lysozyme using 13C and 15N multiple isotopic labeling. J. Am. chem. Soc. 108, 68166817.CrossRefGoogle Scholar
Hartmann, S. R. &Hahn, E. L. (1962). Nuclear double resonance in the rotating frame. Phys. Rev. 128, 20422053.CrossRefGoogle Scholar
Hibler, D., Stolowich, N., Reynolds, M., Gerlt, J. & Wilde, J. (1987). The detection and localization by proton NMR spectroscopy of conformational changes accompanying substitutions for Gln 43 in staphylococcal nuclease. Biochemistry (in the Press).CrossRefGoogle Scholar
Jarema, M. & Moore, P. B. (1986). Studies on 15N labelled 5 S RNA. Assignments in the Helix V region of 5 S RNA, and in the 5 S/L25 Complex. In Structure and Dynamics of RNA, (ed. van Knippenberg, P. H. and Hilbers, C. W.). NATO ASI Series, vol. 110. London: Plenum.Google Scholar
Jones, S. S., Reese, C. R. & Ubasawa, A. (1982), A convenient synthesis of 5-methyluridine from uridine. Synthesis 4, 259260.CrossRefGoogle Scholar
Jue, T. (1987). Winnowing the [13C]-H resonances in the in vivo NMR spectrum. J. magn. Reson. (in the Press).Google Scholar
Kainosho, M. & Nagao, H. (1987). Local structural features around the C-terminal segment of streptomyces subtilisin inhibitor (SSI) studied by the carbonyl carbon nuclear magnetic resonances of three phenylalanyl residues. Biochemistry (in the Press).CrossRefGoogle ScholarPubMed
Kainosho, M. & Tsuji, T. (1982). Assignment of the three methionyl carbonyl carbon resonances in Streptomyces subtilisin inhibitor by a carbon-13 and nitrogen-15 double-labelling technique. A new strategy for structural studies of proteins in solution. Biochemistry 21, 62736279.CrossRefGoogle Scholar
Kime, M. J. (1984 a). Assignment of resonances of exchangeable protons in the NMR spectrum of the complex formed by Escherichia coli ribosomal protein L25 and uniformly nitrogen-15 enriched 5 S RNA fragment. FEBS Lett. 175, 259262.CrossRefGoogle ScholarPubMed
Kime, M. J. (1984 b). Assignment of resonances in the Escherichia coli 5 S RNA fragment proton NMR spectrum using uniform nitrogen-15 enrichment. FEBS Lett. 173, 342–246.CrossRefGoogle ScholarPubMed
Kingsley-Hickman, P. B. & Ugurbil, K. (1985). Selective observation of 1H resonances from hydrogens directly bonded to 13C atoms. J. magn. Reson. 64, 339342.Google Scholar
Kumagai, H., Yamada, H., Matsui, H., Ohkishi, H. & Ogata, K. (1970). Tryosine phenol lyase. I. Purification, crystallization, and properties. J. biol. Chem. 245, 17671772.CrossRefGoogle Scholar
Lapidot, A. & Irving, C. S. (1977). Dynamic structure of whole cells probed by Nuclear Overhauser enhanced nitrogen-15 nuclear magnetic resonance spectroscopy., Proc. natn. Acad. Sci. U.S.A. 74, 19881992.CrossRefGoogle ScholarPubMed
LeMaster, D. M. & Cronan, J. E. Jr.. (1982). Biosynthetic production of 13C-labeled amino acids with site-specific enrichment. J. biol. Chem. 257, 12241230.CrossRefGoogle ScholarPubMed
LeMaster, D. M. & Richards, F. M. (1985). 1H–15N heteronuclear NMR studies of Escherichia coli thioredoxin in samples isotopically labelled by residue type. Biochemistry 24, 72637268.CrossRefGoogle ScholarPubMed
LeMaster, D. M. & Richards, F. M. (1986). NMR studies of Escherichia coli thioredoxin utilizing selective 13C, 15N, and 2N enrichments. In Thioredoxin and Glutaredoxin Systems: Structure and Function (ed. Holmgren, A.et al.), pp. 6776New York: Raven Press.Google Scholar
Leonard, N. J. & Henderson, T. R. (1975). Purine ring rearrangements leading to the development of cytokinin activity. Mechanism of the rearrangement of 3-benzyladenine to N6-benzyladenine1. J. Am. chem. Soc. 97, 49904999.CrossRefGoogle Scholar
Lerner, L. & Bax, A. (1986). Sensitivity-enhanced two-dimensional heteronuclear relayed coherence transfer NMR spectroscopy. J. magn. Reson. 69, 375380.Google Scholar
Leroy, J. L., Gueron, M. & Griffey, R. H. (1983). Proton nuclear magnetic relaxation of 15N-labeled nucleic acids via dipolar coupling and chemical shift anisotropy. J. Am. chem. Soc. 105, 72627266.Google Scholar
Lipnick, R. L. & Fissekis, J. D. (1979). Synthesis of N—15 labeled uracil and its 1-deuteromethyl, 3-deuteromethyl, and 1, 3 dideuteromethyl derivatives. J. Labeled Comp. Radiopharmaceut. 17, 247254.CrossRefGoogle Scholar
Live, D., Armitage, I. M., Dalgarno, D. C. & Cowburn, D. (1985 a). Two-dimensional 1H-113Cd chemical-shift correlation maps by 1H-detected multiplequantum NMR in metal complexes and metalloproteins. J. Am. chem. Soc. 107, 17751777.CrossRefGoogle Scholar
Live, D. H., Davis, D. G., Agosta, W. C. & Cowburn, D. (1984). Observation of 1000-fold enhancement of 15N NMR via proton-detected multiple quantum coherences: studies of large peptides. J. Am. chem. Soc. 106, 61046105.CrossRefGoogle Scholar
Live, D., Kojiro, C. L., Cowburn, D. & Markley, J. (1985 b). Identification of proton NMR signals from the metal ligands in cadmium-substituted plastocyanin via two-dimensional multiple-quantum detection in the absence of explicitly resolved 1H–113Cd Coupling. J. Am. chem. Soc. 107, 30433045.CrossRefGoogle Scholar
Llinás, M., Horsley, W. J. & Klein, M. P. (1976). Nitrogen-15 nuclear magnetic resonance spectrum of alumichrome. Detection by a double resonance Fourier transform technique. J. Am. chem. Soc. 98, 75547558.CrossRefGoogle ScholarPubMed
Lowary, P., Sampson, J., Milligan, J., Groebe, D. & Uhlenbeck, O. C. (1986). A better way to make RNA for physical studies. In Structure and Dynamics of RNA (ed. van Knippenberg, P. H. and Hilbers, C. W.). NATO ASI Series, Vol. 110. London: Plenum.Google Scholar
Lynden-Bell, R. M., Bulsing, J. M. & Doddrell, D. M. (1983). A vector description of multiple-quantum coherence in AXn spin systems. J. magn. Reson. 55, 128144.Google Scholar
Maudsley, A. A. & Ernst, R. R. (1977). Indirect detection of magnetic resonance by heteronuclear two-dimensional spectroscopy. Chem. Phys. Lett. 50, 368372.CrossRefGoogle Scholar
McIntosh, L. P., Griffey, R. H., Muchmore, D. G., Nelson, C. P., Redfield, A. G. & Dahlquist, F. W. (1987). Proton NMR measurements of bacteriophage T4 lysozyme aided by 13C and 15N isotopic labeling: structural and dynamic studies of larger proteins by NMR. Proc. natn. Acad. Sci. U.S.A. (in the Press).CrossRefGoogle ScholarPubMed
Müller, L. (1979). Sensitivity enhanced detection of weak nuclei using heteronuclear multiple quantum coherence. J. Am. chem. Soc. 101, 44814484.CrossRefGoogle Scholar
Mueller, L., Schiksnis, R. A. & Opella, S. J. (1986). Proton-detected natural-abundance 14N NMR spectroscopy utilizing constant-time multiple-quantum excitation. J. magn. Reson. 66, 379384.Google Scholar
Neuhaus, D., Wider, G., Wagner, G. & Wüthrich, K. (1984). X-Relayed1H–1H correlation spectroscopy. J. magn. Reson. 57, 164168.Google Scholar
Ortiz-Polo, G., Krishnamoorthi, R., Markley, J. L., Live, D. H., Davis, D. G. & Cowburn, D. (1986). Natural abundance 15N NMR studies of Turkey ovomucoid third domain: assignment of peptide 15N resonances to the residues at the reactive site region via proton-detected multiple quantum coherence. J. magn. Reson. 68, 303310.Google Scholar
Ott, D. G. (1981). Synthesis with Stable Isotypes of Carbon, Nitrogen, and Oxygen, New York: John Wiley.Google Scholar
Otting, G., Senn, H., Wagner, G. & Wüthrich, K. (1986). Editing of 2D 1H NMR spectra using X half-filters: combined use with residue-selective 15N-labeling of proteins. J. Magn. Reson. 70, 500505.Google Scholar
Otvos, J.D., Engeseth, H. R. & Wehrli, S. (1985). Multiple-quantum 113Cd–1H correlation spectroscopy as a probe of metal coordination environment in metalloproteins. J. magn. Reson. 61, 579584.Google Scholar
Petersheim, M., Mehdi, S. & Gerlt, J. A. (1984). A general procedure for assigning the 31P spectra of nucleic acids. J. Atner. chem. Soc. 106, 439440.CrossRefGoogle Scholar
Rance, M., Wright, P., Messerle, B. A. & Field, L. D. (1987). Site-selective observation of nuclear Overhauser effect in proteins via isotope labels. J. Atner. chem. Soc. (in the Press).CrossRefGoogle Scholar
Redfield, A. G. (1983). Stimulated echo NMR spectra and their use for heteronuclear two-dimensional shift correlation. Chem. Phys. Lett. 96, 537540.CrossRefGoogle Scholar
Redfield, A. G. (1986). Special problems of NMR in H2O solvent. NMR in the Life Sciences (ed. Bradbury, E. M. and Nicolini, C.), pp. 110. NATO ASI Series, vol. 107. London: Plenum.Google Scholar
Redfield, A. G., Choi, B.-S., Griffey, R. H., Jarema, M., Rosevear, P., Hoben, P., Swanson, R. & Soll, D. (1986). Proton NMR studies of RNA's and related enzymes using isotope labels. In Structure and Dynamics of RNA (ed. van Knippenberg, P. H. and Hilbers, C. W.). NATO ASI Series, vol. 110, London: Plenum Press.Google Scholar
Roberts, J. L. & Poulter, C. D. (1978). 2′, 3′, 5′-Tri-benzoyl[4-13C]uridine. An efficient, regiospecific synthesis of the pyrimidine ring. J. org. Chem. 43, 15471550.CrossRefGoogle Scholar
Rothman, D. L., Behar, K. L., Hetherington, H. P., Den Hollander, J. A., Bendall, M. R., Petroff, O. A. C. & Shulman, R. G. (1985). 1H-Observe/13C-decouple spectroscopic measurements of lactate and glutamate in the rat brain in vivo. Proc. Natn. Acad. Sci. U.S.A. 82, 16331637.CrossRefGoogle ScholarPubMed
Roy, S., Redfield, A. G., Papastavros, M. Z. & Sanchez, V. (1984). Nitrogen-15-labeled yeast tRNAPhe: double and two-dimensional heteronuclear NMR of guanosine and uracil ring NH groups. Biochemistry 23, 43954400.CrossRefGoogle ScholarPubMed
Saneyoshi, M. (1971). Synthetic nucleosides and nucleotides. 8. Direct synthesis of 5′ phosphate of 4-thiouridine, 6 thiomosine, and 6-thioguanosine from corresponding oxy nucleotides via thiation procedure. Chem. pharm. Bull., Tokyo 19, 493501.CrossRefGoogle Scholar
Senn, H., Otting, G. & Wüthrich, K. (1987). Protein structure and interactions by combined use of sequential NMR assignments and isotope labeling. J. Amer. chem. Soc. (in the Press).CrossRefGoogle Scholar
Sillerud, L. O., Alger, J. R. & Shulman, R. G. (1981). High-resolution proton NMR studies of intracellular metabolites in yeast using 13C decoupling. J. magn. Reson. 45, 142150.Google Scholar
Sklenář, V. & Bax, A. (1987). Two-dimensional heteronuclear chemical shift correlation in proteins at natural abundance 15N and 13C levels. J. magn. Reson. (in the Press).CrossRefGoogle Scholar
Sklenář, V., Miyashiro, H., Zon, G., Miles, H. T. & Bax, A. (1987). Assignment of the 31P and 1H resonances in oligonucleotides by two-dimensional NMR spectroscopy. FEBS Lett. 210 (in the Press).Google Scholar
Smith, C, Agris, P. F., Schmidt, P. G. & Petsch, J. (1984). Nuclear magnetic resonance signal assignments of purified [13C]methyl-enriched yeast phenylalanine transfer ribonucleic acid. Biochemistry 24, 14341440.CrossRefGoogle Scholar
States, D. J., Haberkon, X. & Ruben, D. J. (1982). A two-dimensional nuclear Overhauser experiment with pure absorption phase in four quadrants. J. magn. Resort. 48, 286292.Google Scholar
Summers, M. F., Marzilli, L. G. & Bax, A. (1986). Complete 1H and 13C assignments of coenzyme B12 through the use of new two-dimensional NMR experiments. J. Amer. chem. Soc. 108, 42854294.CrossRefGoogle Scholar
Vidusek, D. A., Roberts, M. F. & Bodenhausen, G. (1982). Indirect detection of 199Hg-NMR to characterize adducts of ethylmercury phosphate with amino acids and ribonuclease. J. Am. chem. Soc. 104, 54525456.CrossRefGoogle Scholar
Vokbruggen, H. & Bennua, B. (1984). A new simplified nucleoside synthesis. Chem. Ber. 114, 12791286.CrossRefGoogle Scholar
Wagner, G. & Brühwiler, D. (1986 a). Complete assignment of the alpha-carbon nuclear magnetic resonance spectrum of the basic pancreatic trypsin inhibitor. Biochemistry 25, 58305843.CrossRefGoogle ScholarPubMed
Wagner, G., Neuhaus, D., Wörgötter, E., Vašák, M., Kägi, J. H. R. & Wüthrich, K. (1986 a). Sequence-specific 1H-NMR assignments in rabbit liver metallothein-2. Eur. J. Biochem. 157, 275289.CrossRefGoogle Scholar
Walker, T. E., Han, C. H., Kollman, V. H., London, R. E. & Matwiyoff, N. A. (1982). 13C nuclear magnetic resonance studies of the biosynthesis by Microbacterium ammoniaphilum of L-glutamate selectively enriched with carbon-13. J. biol. Chem. 245, 17671772.Google Scholar
Weiss, M. A., Jeitler-Nilsson, A., Fischbein, N. J., Karplus, M. & Sauer, R. T. (1986). Genetic methods in high-resolution NMR studies of proteins. In NMR in the Life Sciences (ed. Bradbury, E. M. and Nicolini, C.), pp. 3748. NATO ASI Series, vol. 107, London: Plenum.CrossRefGoogle Scholar
Weiss, M. A., Redfield, A. G. & Griffey, R. H. (1986). Isotope detected 1H NMR of proteins: a general strategy for editing interproton nuclear Overhauser effects by heteronuclear decoupling, with application to phage lambda repressor. Proc. natn. Acad. Sci. U.S.A. 83, 13251329.CrossRefGoogle ScholarPubMed
Wilde, J. A., Bolton, P. H., Stolowich, N. J. & Gerlt, J. A. (1986). A method for the observation of selected proton NMR resonances of proteins. J. magn. Reson. 68, 168171.Google Scholar
Wörgötter, E., Wagner, G. & Wüthrich, K. (1986). Simplification of two-dimensional 1H NMR spectra using an X-filter. J. Amer. chem. Soc. 108, 61626167.CrossRefGoogle Scholar
Yamazaki, A., Okutsu, M. & Yamada, Y. (1976). Synthesis of guanosine and its derivatives from 5-amino-1-beta-D-ribofuranosyl-4-imidazolcarboxamide. IV. A new route to guanosine via cyanamide derivative. Nucleic Acids Res. 3, 251259.CrossRefGoogle Scholar