Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T17:07:36.895Z Has data issue: false hasContentIssue false

Applications of ultrafast laser spectroscopy for the study of biological systems

Published online by Cambridge University Press:  17 March 2009

Alfred R. Holzwarth
Affiliation:
Max-Planck-Institut für Strahlenchemie, Stiftstraße 34–36, D-4330 Mülheim/Ruhr, FRG

Extract

The discovery of mode-locked laser operation now nearly two decades ago has started a development which enables researchers to probe the dynamics of ultrafast physical and chemical processes at the molecular level on shorter and shorter time scales. Naturally the first applications were in the fields of photophysics and photochemistry where it was then possible for the first time to probe electronic and vibrational relaxation processes on a sub-nanosecond timescale. The development went from lasers producing pulses of many picoseconds to the shortest pulses which are at present just a few femtoseconds long. Soon after their discovery ultrashort pulses were applied also to biological systems which has revealed a wealth of information contributing to our understanding of a broadrange of biological processes on the molecular level.It is the aim of this review to discuss the recent advances and point out some future trends in the study of ultrafast processes in biological systems using laser techniques. The emphasis will be mainly on new results obtained during the last 5 or 6 years. The term ultrafast means that I shall restrict myself to sub-nanosecond processes with a few exceptions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albani, J., Alpert, B., Krajcarski, D. T. & Szabo, A. G. (1985). A fluorescence decay time study of tryptophan in isolated haemoglobin subunits. FEBS Lett. 182, 302304.Google Scholar
Albrecht, A. C. (1961). Polarizations and assignments of transitions: the method of photoselection. J. molec. Spectrosc. 6, 84108.Google Scholar
Alcala, J. R., Gratton, E. & Prendergast, F. G. (1987 a). Interpretation of fluorescence decays in proteins using continuous lifetime distributions. Biophys. J. 51, 925936.Google Scholar
Alcala, J. R., Gratton, E. & Prendergast, F. G. (1987 b). Resolvability of fluorescence lifetime distributions using phase fluorometry. Biophys. J. 51, 587596.Google Scholar
Alcala, J. R., Gratton, E. & Prendergast, F. G. (1987 c). Fluorescence lifetime distributions in proteins. Biophys. J. 51, 597604.CrossRefGoogle ScholarPubMed
Alfano, R. R., Yu, W., Govindjee, R., Becher, B. & Ebrey, T. G. (1976). Picosecond kinetics of the fluorescence from the chromophore of the purple membrane protein of Halobacterium halobium. Biophys. J. 16, 541545.CrossRefGoogle ScholarPubMed
Allen, J. P., Feher, G., Yeates, T. O., Rees, D. C., Deisenhofer, J., Michel, H. & Huber, R. (1986). Structural homology of reaction centres from Rhodopseudomonas sphaeroides and Rhodopseudomonas viridis as determined by X-ray diffraction. Proc. natn. Acad. Sci. U.S.A. 83, 85898593.CrossRefGoogle ScholarPubMed
Allen, J. P., Feher, G., Yeates, T. O., Komiya, H. & Rees, D. C. (1987). Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc. natn. Acad. Sci. U.S.A. 84, 57305734.CrossRefGoogle ScholarPubMed
Alshuth, T. & Stockburger, M. (1986). Time-resolved resonance Raman studies on the photochemical cycle of bacteriorhodopsin. Photochem. Photobiol. 43, 5566.CrossRefGoogle Scholar
Amesz, J. (1987). Primary electron transport and related processes in green photosynthetic bacteria. Photosynthetica 21, 225235.Google Scholar
Amesz, J. & Duysens, L. N. M. (1986). Electron donors and acceptors in photosynthetic reaction centres. Photosyn. Res. 10, 337346.CrossRefGoogle Scholar
Amesz, J. & Vasmel, H. (1986). Fluorescence properties of photosynthetic bacteria. In Light Emission by Plants and Bacteria (ed. Govindjee, , Amesz, J., and Fork, D. C.), pp. 423450. New York: Academic Press.CrossRefGoogle Scholar
Anfinrud, P., Han, C., Hansen, P. A., Moore, J. N. & Hochstrasser, R. M. (1988). Picosecond and femtosecond infrared spectroscopy with CW diode lasers. In Ultrafast Phenomena, vol. VI, Springer Series in Chemical. Physics No. 48, pp. 442446. Berlin: Springer.Google Scholar
Applebury, M. L., Peters, K. S. & Rentzepis, P. M. (1978). Primary intermediates in the photochemical cycle of bacteriorhodopsin. Biophys. J. 23, 375382.Google Scholar
Atkinson, G. H. (1987). Picosecond intermediates in the bacteriorhodopsin photocycle. In Primary Processes in Photobiology (ed. Kobayashi, T.), pp. 213222. New York: Springer.CrossRefGoogle Scholar
Atkinson, G. H., Grieger, I. & Rumbles, G. (1985). Picosecond time-resolved resonance Raman spectroscopy of bacteriorhodopsin intermediates. In Time-Resolved Vibrational Spectroscopy (ed. Laubereau, A., and Stockburger, M.), pp. 255258. Berlin: Springer.Google Scholar
Atkinson, G. H., Brack, T. L., Blanchard, D., Rumbles, G. & Siemankowski, L. (1986). Picosecond conformational intermediates in the bacteriorhodopsin photocycle. In Ultrafast Phenomena, vol. v (ed. Fleming, G. R. and Siegman, A. E.), pp. 409412. Berlin: Springer.Google Scholar
Atkinson, G. H., Blanchard, D., Lemaire, H., Brack, T. L. & Hayashi, H. (1989 a). Picosecond time-resolved fluorescence spectroscopy of k-590 in the bacteriorhodopsin photocycle. Biophys. J. (in the Press).CrossRefGoogle ScholarPubMed
Atkinson, G. H., Brack, T. L., Blanchard, D. & Rumbles, G. (1989 b). Picosecond time-resolved resonance Raman spectroscopy of the initial trans to cis isomerization in the bacteriorhodopsin photocycle. Chem. Phys. 131, 115.CrossRefGoogle Scholar
Aton, B., Doukas, A. G., Narva, D., Callender, R. H., Dinur, U. & Honig, B.(1980). Resonance Raman studies of the primary photochemical event in visual pigments. Biophys. J. 29, 7994.CrossRefGoogle ScholarPubMed
Aussenegg, F. R., Lippitsch, M. E. & Riegler, M. (1986). Picosecond spectroscopy of photoreceptor molecules. Laser Chem. 6, 269289.Google Scholar
Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H. & Gunsalus, I. C. (1975). Dynamics of ligand binding to myoglobin. Biochemistry 14, 53555373.CrossRefGoogle ScholarPubMed
Avron, M. (1981). Photosynthetic electron transport and photophosphorylation. In The Biochemistry of Plants. Photosynthesis, vol. 8 (ed. Hatch, M. D., Boardman, N. K., Stumpf, P. K. and Conn, E. E.), pp. 163191. New York: Academic Press.Google Scholar
Baldwin, J. & Chothia, C. (1979). Haemoglobin: the strùctural changes related to ligand binding and its allosteric mechanism. J. molec. Biol. 129, 175220.CrossRefGoogle ScholarPubMed
Baselt, D. R., Fodor, S. P. A., van der Steen, R. & Lugtenburg, J. (1989). Halorhodopsin and sensory rhodopsin contain a C6-C7s-trans retinal chromophore. Biophys. J. 55, 193196.CrossRefGoogle ScholarPubMed
Becker, R. S. (1988). The visual process: photophysics and photoisomerization of model visual pigments and the primary reaction. Photochem. Photobiol. 48, 369399.CrossRefGoogle ScholarPubMed
Becker, M., Middendorf, D., Woodbury, N. W., Parson, W. W. & Blankenship, R. E. (1986). Picosecond electron transfer and stimulated emission in reaction centres of Rhodobacter sphaeroides and Chloroflexus aurantiacus. In Ultrafast Phenomena, vol. v (ed. Fleming, G. R. and Siegman, A. E.), Springer Series in Chemical Physics No. 46, pp. 374378. Berlin: Springer.CrossRefGoogle Scholar
Beechem, J. M. & Brand, L. (1985). Time-resolved fluorescence of proteins. A. Rev. Biochem. 54, 4371.Google Scholar
Bensasson, R., Land, E. J. & Truscott, T. G. (1975). Nanosecond flash photolysis of rhodopsin. Nature 258, 768770.Google Scholar
Bergström, H., Sundström, V., van Grondelle, R., Gillbro, T. & Cogdell, R. (1988 a). Energy transfer dynamics of isolated B800–850 and B800–820 pigmentprotein complexes of Rhodobacter sphaeroides and Rhodopseudomonas acidophila. Biochim. biophys. Acta 936, 9098.Google Scholar
Bergström, H., Westerhuis, W. H. J., Sundström, V., Van Grondelle, R., Niederman, R. A. & Gillbro, T. (1988 b). Energy transfer within the isolated b 875 lightharvesting pigment–protein complex of Rhodobacter sphaeroides at 77 K studied by picosecond absorption spectroscopy. FEBS Lett. 233, 1216.Google Scholar
Bittersmann, E. & Holzwarth, A. R. (1989). Exciton equilibration and trapping kinetics in photosynthetic antenna systems, 1. Three-dimensional picosecond decayassociated fluorescence spectra of the green alga Scenedesmus obliquus. Biophys. J. (in the Press).Google Scholar
Bittersmann, E., Senger, H. & Holzwarth, A. R. (1987). Synchronous cultures of the green alga Scenedesmus obliquus: comparison of picosecond decay associated emission spectra and fluorescence induction kinetics. J. Photochem. Photobiol. 1, 247260.Google Scholar
Bittersmann, E., Reuter, W., Wehrmeyer, W. & Holzwarth, A. R. (1988). Picosecond energy transfer kinetics in allophycocyanin aggregates from Mastigocladus laminosus. In Photosynthetic Light-Harvesting Systems (ed. Scheer, H., and Schneider, S.), pp. 451455. Berlin: de Gruyter.Google Scholar
Bixon, M., Jortner, J., Michel-Beyerle, M. E., Ogrodnik, A. & Lersch, W. (1987). The role of the accessory bacteriochlorophyll in reaction centres of photosynthetic bacteria: intermediate acceptor in the primary electron transfer? Chem. Phys. Lett. 140, 626630.CrossRefGoogle Scholar
Bixon, M., Jortner, J., Plato, M. & Michel-Beyerle, M. E. (1988). Mechanism of the primary charge separation in bacterial photosynthetic reaction centers. In The Photosynthetic Bacterial Reaction Center: Structure and Dynamics (ed. Vermeglio, J. and Breton, A.), pp. 399419New York: Plenum Press.Google Scholar
Blankenship, R. E., Feick, R., Bruce, B. D., Kirmaier, C., Holten, D. & Fuller, R. C. (1983). Primary photochemistry in the facultative green photosynthetic bacterium Chloroflexus aurantiacus. J. cell. Biochem. 22, 251261.CrossRefGoogle ScholarPubMed
Boens, N., Janssens, L. D. & De Schryver, F. C. (1988). Simultaneous analysis of the fluorescence decay surface of tryptophan in function of temperature, pH, quencher and emission wavelength. In Ultrafast Phenomena, vol. vi (ed. Yajima, T., Yoshihara, K., Harris, C. B., and Shionoya, S.), Springer Series in Chemical Physics No. 48, pp. 486488. Berlin: Springer.Google Scholar
Borisov, A. Y., Danielius, R. V., Kudzmauskas, S., Razjivin, A. P., Sirutkaitis, V. A., Valkunas, L. & Piskarskas, A. S. (1983). Evidence against the stage of electron localization on monomeric bacteriochlorophyll (P-800) under charge separation in reaction centres. Photobiochem. Photobiophys. 6, 3338.Google Scholar
Borisov, A. Y., Danelius, P. V., Il'ina, M. D., Krasauskas, V. V., Piskarskas, A. S., Razjivin, A. P. & Rotomskis, R. J. (1985). Picosecond kinetics and spectra of difference absorption changes in pigment-protein complexes of photosystem I. Molec. Biol. 19, 526531.Google Scholar
Boxer, S. G., Lockhart, D. J. & Middendorf, T. R. (1986). Photochemical holeburning in photosynthetic reaction centres. Chem. Phys. Lett. 123: 476482.CrossRefGoogle Scholar
Braiman, M. & Mathies, R. (1982). Resonance Raman spectra of bacteriorhodopsin's primary photoproduct: evidence for a distorted 13-cis retinal chromophore. Proc. natn. Acad. Sci. U.S.A. 79, 403407.Google Scholar
Braslavsky, S. E. (1984). The photophysics and photochemistry of the plant photosensor pigment phytochrome. Pure appl. Chem. 56: 11531165.Google Scholar
Braslavsky, S. E. (1989). Photochromism in biological systems. Phytochrome. In Photochromic Materials and Systems (ed. Dürr, H., and Bouas-Laurent, H.). Elsevier, (in the Press).Google Scholar
Braslavsky, S. E., Holzwarth, A. R., Langer, E., Lehner, H., Matthews, J. I. & Schaffner, K. (1980 a). Phytochrome models. IV. Conformational heterogeneity and photochemical changes of biliverdin dimethylesters in solution. Israel J. Chem. 20, 196202.Google Scholar
Braslavsky, S. E., Matthews, J. I., Herbert, H. J., De Kok, J., Spruit, C. J. P. & Schaffner, K. (1980 b). Characterization of a microsecond intermediate in the laser flash photolysis of small phytochrome from oat. Photochem. Photobiol. 31, 417420.Google Scholar
Braslavsky, S. E., Holzwarth, A. R. & Schaffner, K. (1983). Conformation analysis, photophysics and photochemistry of bile pigments. Bilirubin and biliverdin dimethyl esters and related linear tetrapyrroles. Angew. Chem. 95, 670689.Google Scholar
Breton, J. & Geacintov, N. E. (1980). Picosecond fluorescence kinetics and fastenergy transfer processes in photosynthetic membranes. Biochim. biophys. Acta. 594, 132.Google Scholar
Breton, J., Martin, J.-L., Migus, A., Antonetti, A. & Orszag, A. (1986 a). Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction centre of the photosynthetic bacterium Rhodopseudomonas viridis. Proc. natn. Acad. Sci. U.S.A. 83, 51215125.Google Scholar
Breton, J., Martin, J. L., Petrich, J., Migus, A. & Antonetti, A. (1986 b). The absence of a spectroscopically resolved intermediate state P+B in bacterial photosynthesis. FEBS Lett. 209, 3743.Google Scholar
Breton, J., Martin, J.-L., Fleming, G. R. & Lambry, J.-C. (1988). Low-temperature femtosecond spectroscopy of the initial step of electron transfer in reaction centres from photosynthetic purple bacteria. Biochemistry 27, 82768284.Google Scholar
Brock, H., Ruzsicska, B. P., Holzwarth, A. R., Braslavsky, S. E., Arai, T., Schlamann, W. & Schaffner, K. (1987). Fluorescence lifetimes and relative quantum yields of 124-kilodalton oat phytochrome in H2O and D2O solutions. Biochemistry 26, 14121417.CrossRefGoogle Scholar
Brüenger, A. T., Huber, A. & Karplus, M. (1987). Trypsinogen-trypsin transition: a molecular dynamics study of induced conformational change in the activation domain. Biochemistry 26, 51535162.Google Scholar
Brune, D. C., King, G. H., Infosino, A., Steiner, T., Thewalt, M. L. W. & Blankenship, R. E. (1987 a). Antenna organization in green photosynthetic bacteria. 2. Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus. Biochemistry 26, 86528658.CrossRefGoogle ScholarPubMed
Brune, D. C., Nazawa, T. & Blankenship, R. E. (1987 b). Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacterichlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. Biochemistry 26, 86448652.Google Scholar
Buhks, E. & Jortner, J. (1980). Activationless electron transfer processes in biological systems. FEBS Lett. 109, 117120.Google Scholar
Burton, D. R., Forsen, S., Karlstrom, G., Dwek, R. A., McLaughlin, A. C. & Wain-Hobson, S. (1977). The determination of molecular motion parameters from proton-relaxation-enhancement measurements in a number of Gd(iii) antibody fragment complexes. Eur. J. Biochem. 75, 445453.CrossRefGoogle Scholar
Busch, G. E., Applebury, M. L., Lamola, A. A. & Rentzepis, P. M. (1972). Formation and decay of prelumirhodopsin at room temperatures. Proc. natn. Acad. Sci. U.S.A. 69, 28022806.Google Scholar
Butler, W. L., Hendricks, S. B. & Siegelman, H. W. (1964). Action spectra of phytochrome in vitro. Photochem. Photobiol. 3, 521528.Google Scholar
Callender, R. H. (1982). An introduction to visual pigments and purple membranes and their primary processes. In Biological Events Probed by Ultrafast Laser Spectroscopy. (ed. Alfano, R. R.), pp. 239258. New York: Academic Press.Google Scholar
Campillo, A. J., Shapiro, S. L., Geacintov, N. E. & Swenberg, C. E. (1977). Singlepulse picosecond determination of 735 nm fluorescence risetime in spinach chloroplasts. FEBS Lett. 83, 316320.Google Scholar
Campion, A., Terner, J. & El-Sayed, M. A. (1977). Time-resolved resonance Raman spectroscopy of bacteriorhodopsin. Nature 265, 659661.Google Scholar
Careri, G., Fasella, P. & Gratton, E. (1979). Enzyme dynamics: the statistical physics approach. A. Rev. Biophys. Bioeng. 8, 6997.Google Scholar
Castorday, K., Guard-Friar, D., MacColl, R. & Berns, D. S. (1988). The development of exciton migration routes for phycocyanin 645 and allophycocyanin. Photochem. Photobiol. 47, 285291.Google Scholar
Causgrove, T. P., Yang, S. & Struve, W. S. (1988). Polarized pump-probe spectroscopy of exciton transport in bacteriochlorophyll a-protein from Prosthecochloris aestuarii. In Ultrafast Phenomena, vol. vi (ed. Yajima, T., Yoshihara, K., Harris, C. B., and Shionoya, S.). Springer Series in Chemical Physics No. 48, pp. 590592. Berlin: Springer.Google Scholar
Chai, Y. G., Singh, B. R., Song, P.-S., Lee, J. & Robinson, G. W. (1987). Purification and spectroscopic properties of 124 kDa oat phytochrome. Anal. Biochem. 163, 322330.Google Scholar
Chang, M. C., Petrich, J. W., McDonald, D. B. & Fleming, G. R. (1983). Nonexponential fluorescence decay of tryptophan, tryptophylglycine, and glycyltryptophan. J. Am. Chem. Soc. 105, 38193824.Google Scholar
Chekalin, S. V., Matveets, Y. A. & Yartsev, A. P. (1986). Femtosecond-pulse spectroscopy of primary photoprocesses in reaction centres of Rhodopseudomonas sphaeroides R-26. In Ultrafast Phenomena, vol. v (ed. Fleming, G. R. and Siegman, A. E.), Springer Series in Chemical Physics No. 46, pp. 402405. Berlin: Springer.Google Scholar
Chekalin, S. V., Matveets, Y. A. & Yartsev, A. P. (1987 a). Study of fast photoprocesses in biomolecules with the aid of a femtosecond laser spectrometer. Rev. Phys. Appl. 22, 17611771.Google Scholar
Chekalin, S. V., Matveetz, Y. A., Shkuropatov, A. Y., Shuvalov, V. A. & Yartzev, A. P. (1987 b). Femtosecond spectroscopy of primary charge separation in modified reaction centres of Rhodobacter sphaeroides (R-26). FEBS Lett. 216, 245248.Google Scholar
Chen, L. X. Q., Longworth, J. W. & Fleming, G. R. (1987 a). Picosecond timeresolved fluorescence of ribonuclease Tl. A pH and substrate analogue binding study. Biophys. J. 51, 865873.Google Scholar
Chen, L. X. Q., Petrich, J. W., Fleming, G. R. & Perico, A. (1987 b). Picosecond fluorescence studies of polypeptide dynamics: Fluorescence anisotropies and lifetimes. Chem. Phys. Lett. 139, 5561.CrossRefGoogle Scholar
Chen, L. X. Q., Engh, R. A. & Fleming, G. R. (1988). Reorientation of tryptophan and simple peptides: Onset of internal flexibility and comparison with molecular dynamics simulation. J. phys. Chem. 92, 48114816.Google Scholar
Chernoff, D. A., Hochstrasser, R. M. & Steele, A. W. (1980). Geminate recombination of O2 and hemoglobin. Proc. natn. Acad. Sci. U.S.A. 77, 56065610.Google Scholar
Choi, S., Spiro, T. G., Langry, K. C., Smith, K. M., Budd, D. L. & La Mar, G. N. (1982). Structural correlations and vinyl influences in resonance Raman spectra of protoheme complexes and proteins. J. Am. Chem. Soc. 104, 43454351.Google Scholar
Clayton, R. K. (1973). Primary processes in bacterial photosynthesis. A. Rev. biophys. Bioenerg. 2, 131156.Google Scholar
Cockle, S. A. & Szabo, A. G. (1981). Time-resolved fluorescence spectra of tryptophan in monomeric glucagon. Photochem. Photobiol. 34, 2327.Google Scholar
Cogdell, R. J. (1983). Photosynthetic reaction centres. A. Rev. Plant Physiol. 34, 2145.Google Scholar
Cone, R. A. (1972). Rotational diffusion of rhodopsin in the visual receptor membrane. Nature 236, 3943.Google Scholar
Cornelius, P. A., Steele, A. W., Chernoff, D. A. & Hochstrasser, R. M. (1981). Different dissociation pathways and observation of an excited deoxy state in picosecond photolysis of oxy- and carboxymyoglobin. Proc. natn. Acad. Sci. U.S.A. 78, 75267529.Google Scholar
Cornelius, P. A., Hochstrasser, R. M. & Steele, A. W. (1983). Ultrafast relaxation in picosecond photolysis of nitrosylhemoglobin. J. molec. Biol. 163, 119128.Google Scholar
Cowgill, R. W. (1976). Tyrosyl fluorescence in proteins and model peptides. In Biochemical Fluorescence Concepts vol. 2 (ed. Chen, R. F., and Edelhoch, H.), pp. 441468. New York: Marcel Dekker.Google Scholar
Creed, D. (1984). The photophysics and photochemistry of the near-UV absorbing amino acids. II. Tyrosine and its simple derivatives. Photochem. Photobiol. 39, 563575.Google Scholar
Crouch, R. K. (1986). Studies of rhodopsin and bacteriorhodopsin using modified retinals. Yearly review. Photochem. Photobiol. 44, 803807.Google Scholar
Danielius, R. V., Satoh, K., van Kan, P. J. M., Plijter, J. J., Nuijs, A. M. & van Gorkom, H. J. (1987). The primary reaction of photosystem II in the D1–D2 cytochrome B-559 complex. FEBS Lett. 213, 241244.Google Scholar
Dasgupta, S., Spiro, T. G., Johnson, C. K., Dalickas, G. A. & Hochstrasser, R. M. (1985). Picosecond resonance Raman evidence for unrelaxed heme in the (carbonmonoxy)myoglobin photoproduct. Biochemistry 24, 52955297.CrossRefGoogle ScholarPubMed
Deisenhofer, J., Epp, O., Miki, K., Huber, R. & Michel, H. (1984). X-ray structureanalysis of a membrane–protein complex. Electron density map at 3A resolution and a model of the chromophores of the photosynthetic reaction centre from Rhodopseudomonas viridis. J. Molec. Biol. 180, 385398.Google Scholar
Deisenhofer, J., Epp, O., Miki, K., Huber, R. & Michel, H. (1985 a). Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3A resolution. Nature 318, 618624.Google Scholar
Deisenhofer, J., Michel, H. & Huber, R. (1985 b). The structural basis of photosynthetic light reactions in bacteria. Trends in Biochem. 10, 243248.Google Scholar
Demchenko, A. P. (1985). Fluorescence molecular relaxation studies of protein dynamics. The probe binding site of melittin is rigid on the nanosecond time scale. FEBS Lett. 182, 99102.Google Scholar
Demchenko, A. P. (1986). Fluorescence analysis of protein dynamics. Essays in Biochem. 22, 120157.Google Scholar
Demmer, D. R., James, D. R., Steer, R. P. & Verrall, R. E. (1987). Three exponential fluorescence decay of horse liver alcohol dehydrogenase revealed by iodide quenching. Photochem. Photobiol. 45, 3948.Google Scholar
Desie, G., Boens, N. & De Schryver, F. C. (1986). Study of the time-resolved tryptophan fluorescence of crystalline alpha-chymotrypsin. Biochemistry 25, 83018308.Google Scholar
Desie, G., Boens, N., van den Zegel, M. & de Schryver, F. C. (1985). Fluorescence decay of alpha-chymotrypsin studied by the picosecond-resolved single photoncounting technique. Analyt. Chim. Acta 170, 4559.Google Scholar
Dexter, D. L. (1952). A theory of sensitized luminescence in solids. J. chem. Phys. 21, 836850.Google Scholar
Dinur, U., Honig, B. & Ottolenghi, M. (1981). Analysis of primary photochemical processes in bacteriorhodopsin. Photochem. Photobiol. 33, 523527.Google Scholar
Dixon, A. J., Glyn, P., Healy, M. A., Hodges, P. M., Jenkins, T., Poliakoff, M. & Turner, J. J. (1988). Fast time-resolved IR spectroscopy of biological molecules in aqueous solution: The reaction kinetics of myoglobin with carbon monoxide. Spectrochim. Acta 44A, 13091314.Google Scholar
Dobler, J., Zinth, W., Kaiser, W. & Oesterhelt, D. (1988). Excited-state reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy. Chem. Phys. Lett. 144, 215220.Google Scholar
Dobson, C. M. & Karplus, M. (1986). Internal motion of proteins: nuclear magnetic resonance measurements and dynamic simulations. Methods Enzymol. 131, 362389.Google Scholar
Dornmair, K. & Jähnig, F. (1989). Internal dynamics of lactose permease. Proc. natn. Acad. Sci. U.S.A. (in the Press).Google Scholar
Doukas, A. G., Lu, P. Y. & Alfano, R. R. (1981). Fluorescence relaxation kinetics from rhodopsin and isorhodopsin. Biophys. J. 35, 547550.Google Scholar
Doukas, A. G., Junnarkar, M. R., Chandra, D., Alfano, R. R. & Callender, R. H. (1983). Picosecond fluorescence relaxation kinetics from all-trans retinal. Chem. Phys. Lett. 100, 420424.Google Scholar
Doukas, A. G., Junnarkar, M. R., Alfano, R. R., Callender, R. H., Kakitani, T. & Honig, B. (1984). Fluorescence quantum yield of visual pigments: evidence for subpicosecond isomerization rates. Proc. natn. Acad. Sci. U.S.A. 81, 47904794.Google Scholar
Doukas, A. G., Junnarkar, M. R., Alfano, R. R., Callender, R. H. & Balogh-Nair, V. (1985). The primary event in vision investigated by time-resolved fluorescence spectroscopy. Biophys. j. 47, 795798.Google Scholar
Doukas, A. G., Callender, R. H. & Alfano, R. R. (1986). Ultrafast photophysical processes in visual pigments. Appl. Fluoresc. Biomed. Sci., 6989.Google Scholar
Drews, G. (1985). Structure and functional organization of light harvesting complexes and photochemical reaction centres in membranes of phototropic bacteria. Microbiol. Rev. 49, 5970.CrossRefGoogle Scholar
Ebrey, T. G. (1982). Primary events in bacteriorhodopsin. In Biological Events Probed by Ultrafast Laser Spectroscopy (ed. Alfano, R. R.), pp. 271280. New York: Academic Press.Google Scholar
Eccleston, J. F., Gratton, E. & Jameson, D. M. (1987). Interaction of a fluorescent analogue of GDP with elongation factor Tu: steady-state and time-resolved fluorescence studies. Biochemistry 26, 39023907.Google Scholar
Eckert, H.-J., Renger, G., Bernarding, J., Faust, P., Eichler, H. J. & Salk, J. (1987). Examination of fluorescence lifetime and radical-pair decay in photosystem II membrane fragments from spinach. Biochim. biophys. Acta 893, 208218.Google Scholar
Edelstein, S. J. (1975). Co-operative interactions of haemoglobin. In Annual Review of Biochemistry (vol. 44, ed. Snell, E. E., Boyer, P. D., Meister, A., and Richardson, C. C.), pp. 209232. Palo Alto: Annual Review Inc.Google Scholar
Eftink, M. R. & Ghiron, C. A. (1987). Frequency domain measurements of the fluorescence lifetime of ribonuclease T1. Biophys. J. 52, 467473.Google Scholar
Eftink, M. R. & Wasylewski, Z. (1988). Effect of hydrostatic pressure on fluorescence reactions in proteins. SPIE 909, 389393.Google Scholar
Eftink, M. R., Wasylewski, Z. & Ghiron, C. A. (1987). Phase-resolved spectral measurements with several two tryptophan containing proteins. Biochemistry 26, 83388346.Google Scholar
Ehrenberg, M. & Rigler, R. (1972). Polarized fluorescence and rotational Brownian motion. Chem. Phys. Lett. 14, 539544.Google Scholar
Eilfeld, P. & Rüdiger, W. (1985). Absorption spectra of phytochrome intermediates. Z. Naturforsch. 40C, 109114.Google Scholar
Eisenstein, L. & Frauenfelder, H. (1982). Introduction to hemoproteins. In Biological Events Probed by Ultrafast Laser Spectroscopy (ed. Alfano, R. R.), pp. 321335. New York: Academic Press.Google Scholar
El-Sayed, M. A. (1985). Techniques of time-resolved resonance Raman spectra of photochemical transients in the milli- to picosecond time scale. Pure appl. Chem. 57, 187193.Google Scholar
El-Sayed, M. A. & Terner, J. (1979). Power- and time-resolved resonance Raman studies and conformational changes in bacteriorhodopsin. Photochem. Photobiol. 30, 125132.Google Scholar
Eyring, G. & Mathies, R. (1979). Resonance Raman studies of bathorhodopsin: evidence for a protonated Schiffbase linkage. Proc. natn. Acad. Sci. U.S.A. 76, 3337.Google Scholar
Eyring, G., Curry, B., Broek, A., Lugtenburg, J. & Mathies, R. (1982). Assignment and interpretation of hydrogen out-of-plane vibrations in the resonance Raman spectra of rhodopsin and bathorhodopsin. Biochemistry 21, 384393.Google Scholar
Fenton, J. M., Pellin, M. J., Govindjee, & Kaufmann, K. J. (1979). Primary photochemistry of the reaction centre of photosystem I. FEBS Lett. 100, 14.Google Scholar
Fetisova, Z. G. & Borisov, A. Y. (1980). Picosecond time scale of heterogenous excitation energy transfer from accessory light-harvesting bacterioviridin antenna to main bacteriochlorophyll a antenna in photoactive pigment–protein complexes obtained from Chlorobium limicola, a green bacterium. FEBS Lett. 114, 323326.Google Scholar
Fetisova, Z. G., Freiberg, A. M. & Timpmann, K. E. (1987). Investigations by picosecond polarized fluorescence spectrochronography of structural aspects of energy transfer in living cells of the green bacterium Chlorobium limicola. FEBS Lett. 223, 161164.Google Scholar
Fetisova, Z. G., Freiberg, A. M. & Timpmann, K. E. (1988). Long-range molecular order as an efficient strategy for light-harvesting in photosynthesis. Nature 334, 633634.Google Scholar
Findsen, E. W., Friedman, J. M., Ondrias, M. R. & Simon, S. R. (1985 a). Picosecond time-resolved resonance Raman studies of hempglobin: implications for reactivity. Science 229, 661665.Google Scholar
Findsen, E. W., Scott, T. W., Chance, M. R., Friedman, J. M. & Ondrias, M. R.(1985 b). Picosecond time-resolved Raman studies of photodissociated carboxymyoglobin. J. Am. chem. Soc. 107, 33553357.Google Scholar
Fleming, G. R. (1986). Subpicosecond spectroscopy. A. Rev. phys. Chem. 37, 81104.Google Scholar
Fleming, G. R., Lotshaw, W. T., Gulotty, R. J., Chang, M. C. & Petrich, J. W. (1983). Picosecond spectroscopy of solutions, proteins and photosynthetic membranes. Laser Chem. 3, 181201.Google Scholar
Fleming, G. R., Martin, J. L. & Breton, J. (1988). Rates of primary electron transfer in photosynthetic reaction centres and their mechanistic implications. Nature 333, 190192.Google Scholar
Fodor, S. P. A., Ames, J. B., Gebhard, R., van den Berg, E. M. M., Stoeckenius, W., Lugtenburg, J. & Mathies, R. A. (1988 a). Chromophore structure in bacteriorhodopsin's intermediate: Implications for the proton-pumping mechanism. Biochemistry 27, 70977101.Google Scholar
Fodor, S. P. A., Lagarias, J. C. & Mathies, R. A. (1988 b). Resonance Raman spectra of the Pr-form of phytochrome. Photochem. Photobiol. 48, 120136.Google Scholar
Fodor, S. P. A., Pollard, W. T., Gebhard, R., van den Berg, E. M. M., Lugtenburg, J. & Mathies, R. A. (1988 c). Bacteriorhodopsin's L550 intermediate contains a C14-C15 S-trans-retinal chromophore. Proc. natn. Acad. Sci. U.S.A. 85, 21562160.Google Scholar
Förster, T. (1948). Intermolecular energy transfer and fluorescence. A. Phys. Leipzig 2, 5575.Google Scholar
Förster, T. (1965). 1. Delocalized excitation and excitation transfer. In Modern Quantum Chemistry (ed. Sinanoglu, O.), Part III: Action of Light and Organic Crystals, pp. 93137. New York: Academic Press.Google Scholar
Frauenfelder, H. (1985). Ligand Binding and protein dynamics. In Structure Motion: Membranes, Nucleic Acids Proteins (ed. Clementi, E., Corongui, G., Sarrna, M. H. and Sarma, R. H.), pp. 205217. Guilderland: Adenine Press.Google Scholar
Frauenfelder, H. (1987). Proteins and glasses. In Amorphous Liquid Materials (NATO ASI Series E), vol. 118 (ed. Luescher, E., Fritsch, G. and Jacucci, G.), pp. 118. Dordrecht: Nijhoff.Google Scholar
Frauenfelder, H. & Wolynes, P. G. (1985). Rate theories and puzzles of haem protein kinetics. Science 229, 337345.Google Scholar
Frauenfelder, H., Parak, F. & Young, R. D. (1988). Conformational substates in proteins. A. Rev. Biophys. Biophys. Chem. 17, 451479.Google Scholar
Freiberg, A. M., Godik, V. I., Kharchenko, S. G., Timpmann, K. E., Borisov, A. Y. & Rebane, K. K. (1985). Picosecond fluorescence of reaction centres from Rhodospirillum rubrum. FEBS Lett. 189, 341344.Google Scholar
Freiberg, A. M., Timpman, K. E. & Fetisova, Z. G. (1988). Excitation energy transfer in living cells of the green bacterium Chlorobium limicola studied by picosecond fluorescence spectroscopy. In Green Photosynthetic Bacteria (ed. Olson, J. M., Ormerod, J. G., Amesz, J., Stackebrandt, E. and Truper, H. G.), pp. 8190. New York: Plenum Press.Google Scholar
Freiberg, A., Godik, V. I., Pullerits, T. & Timpman, K. (1989). Picosecond dynamics of directed excitation transfer in spectrally heterogeneous light-harvesting antenna of purple bacteria. Biochim. biophys. Acta 973, 93104.Google Scholar
Friedman, J. M., Scott, T. W., Fisanick, G. J., Simon, S. R., Findsen, E. W., Ondrias, M. R. & Macdonald, V. W. (1985). Localized control of ligand binding in hemoglobin: effect of tertiary structure on picosecond geminate recombination. Science 229, 187190.Google Scholar
F¨uglistaller, P., Suter, F. & Zuber, H. (1985). Linker polypeptides of the phycobilisome from the cyanobacterium Mastigocladus laminosus: amino-acid sequences and relationships. Biol. Chem. Hoppe-Seyler 366, 9931001.Google Scholar
Füglistaller, P., Mimuro, M., Suter, F. & Zuber, H. (1987). Allophycocyanin complexes of the phycobilisome from Mastigocladus laminosus. Influence of the linker polypeptide L 89c on the spectral properties of the phycobiliprotein subunits. Biol. Chem. Hoppe-Seyler 368, 353367.Google Scholar
Fukumoto, J. M., Hanamoto, J. H. & El-Sayed, M. A. (1984). On the tyrosinate involvement in the Schiff base deprotonation in the proton pump cycle of bacteriorhodopsin. Photochem. Photobiol. 39, 7579.Google Scholar
Galley, W. C. (1976). Heterogeneity in protein emission spectra. In Biochemical Fluorescence Concepts, vol. 2 (ed. Chen, R. F., and Edelhoch, H.), pp. 409439. New York: Marcel Dekker.Google Scholar
Gantt, E. (1975). Phycobilisomes: light-harvesting pigment protein complexes. Bioscience 25, 781788.Google Scholar
Gauduchon, P. & Wahl, P. (1978) Pulse fluorimetry of tyrosyl peptides. Biophys. Chem. 8, 87104.Google Scholar
Gerwert, K. & Siebert, F. (1986). Evidence for light-induced 13-cis, 14–S—cis isomerization in bacteriorhodopsin obtained by FTIR difference spectroscopy using isotopically labelled retinals. EMBO j. 5, 805811.Google Scholar
Gillbro, T. & Sundström, V. (1983). Picosecond kinetics and a model for the primary events of bacteriorhodopsin. Photochem. Photobiol. 37, 445455.Google Scholar
Gillbro, T., Sandström, A., Sundström, V., Wendler, J. & Holzwarth, A. R. (1985 a). Picosecond study of energy transfer kinetics in phycobilisomes of Synechococcus 6301 and the mutant AN 112. Biochim. biophys. Acta 808, 5265.Google Scholar
Gillbro, T., Sundström, V., Sandström, A., Spangfort, M. & Andersson, B. (1985 b). Energy transfer within the isolated light-harvesting chlorophyll a/b protein of photosystem II (LHC-II). FEBS Lett. 193, 267270.Google Scholar
Gillbro, T., Sandström, A., Sundström, V., Fischer, R. & Scheer, H. (1987). Picosecond time-resolved energy transfer kinetics within C-phycocyanin and allophycocyanin aggregates. Photosynthetic Light-Harvesting Systems, 457467.Google Scholar
Gillbro, T., Cogdell, R. J. & Sundström, V. (1988 a). Energy transfer from carotenoid to bacteriochlorophyll a in the B800–820 antenna complexes from Rhodopseudomonas acidophila strain 7050. FEBS Lett. 235, 169172.Google Scholar
Gillbro, T., Sandström, A., Spangfort, M., Sundström, V. & van Grondelle, R. (1988 b). Excitation energy annihilation in aggregates of chlorophyll a/b complexes. Biochim. biophys. Acta (in the Press).Google Scholar
Gillbro, T., Sandström, A., Sundström, V. & Olson, J. M. (1988 c). Picosecond energy transfer kinetics in chlorosomes and bacteriochlorophyll a proteins of Chlorobium limicola. In Green Photosynthetic Bacteria (ed. Olson, J. M., Ormerod, J. G., Amesz, J., Stackebrandt, E. and Truper, H. G.), pp. 9196. New York: Plenum Press.Google Scholar
Glazer, A. N. (1984). Phycobilisome – a macromolecular complex optimized for light energy transfer. Biochim. biophys. Acta 768, 2951.Google Scholar
Glazer, A.N., Chan, C., Williams, R. C., Yeh, S. W. & Clark, J. H. (1985 a). Kinetics of energy flow in the phycobilisome core. Science 230, 10511053.CrossRefGoogle ScholarPubMed
Glazer, A. N., Yeh, S. W., Webb, S. P. & Clark, J. H. (1985 b). Disk-to-disk transfer as the rate-limiting step for energy flow in phycobilisomes. Science 227, 419423.Google Scholar
Golbeck, J. H. (1987). Structure function and organization of the photosystem I reaction centre complex. Biochim. biophys. Acta 895, 167204.Google Scholar
Goldschmidt, C. R., Ottolenghi, M. & Rosenfeld, T. (1976). Primary processes in photochemistry of rhodopsin at room temperature. Nature 263, 169171.Google Scholar
Gore, B. L., Giorgi, L. B. & Porter, G. (1986). Picosecond transient absorption spectroscopy of green plant photosystem I reaction centres. In Ultrafast Phenomena, vol. v (ed. Fleming, G. R. and Siegman, A. E.), Springer Series in Chemical Physics, no. 46, pp. 398401. Berlin: Springer.Google Scholar
Gratton, E. & Barbieri, B. (1987). Molecular dynamics studies using frequencydomain fluorometry. Proc. Soc. Photo-Opt. Jnstrum. Eng. 743, 104109.Google Scholar
Gratton, E. & Lakowicz, J. R. (1985). Ultrafast dynamics in proteins and membranes by time resolved fluorescence spectroscopy. In Structure and Motion: Membranes, Nucleic Acids and Proteins (ed. Clementi, E., Corongiu, G., Sarma, M. H. and Sarma, R. H.), pp. 155168. Guilderland, New York: Adenine Press.Google Scholar
Gratton, E., Alcala, J. R. & Marriott, G. (1986). Rotations of tryptophan residues in proteins. Biochem. Soc. Trans. 14, 835838.Google Scholar
Gratton, E., Alcala, J. R., Marriott, G. & Prendergast, F. J. (1987). Fluorescence lifetime distributions of single tryptophan proteins: a protein dynamics approach. In Structure, Dynamics and Function of Biomolecules (ed. Ehrenberg, A., Rigler, R., Graslund, A. and Nilsson, L.). Springer Series in Biophysics, No. 1, pp. 132135. Berlin: Springer.Google Scholar
Green, B. H., Monger, T. G., Alfano, R. R., Aton, B. & Callender, R. H. (1977). Cis-trans isomerization in rhodopsin occurs in picoseconds. Nature 269, 179180.Google Scholar
Greene, B. I., Weisman, R. B., Hochstrasser, R. M. & Eaton, W. A. (1978). Spectroscopic studies of oxy- and carbonmonoxyhemoglobin after pulsed optical excitation. Proc. natn. Acad. Sci. U.S.A. 75, 52555259.Google Scholar
Grellmann, K.-H., Livingston, R. & Pratt, D. (1962). A flash-photolytic investigation of rhodopsin at low temperatures. Nature 193, 12581260.Google Scholar
Grimm, R., Eckerskorn, C, Lottspeich, F., Zenger, C. & Rüdiger, W. (1988). Sequence-analysis of proteolytic fragments of 124-kilodalton phytochrome from etiolated Avena-sativa 1. Conclusions on the conformation of the native protein. Planta 174, 396401.Google Scholar
Groma, G. I., Szabo, G. & Varo, G. (1984). Direct measurement of picosecond charge separation in bacteriorhodopsin. Nature 308, 557558.Google Scholar
Groma, G. I., Raksi, R., Szabo, G. & Varo, G. (1988). Picosecond and nanosecond components in bacteriorhodopsin light-induced electric response signal. Biophys. J. 54, 7780.Google Scholar
Gülen, D. & Knox, R. S. (1984). Absorption and circular dichroism of the chlorophyll protein CPU: extensions of a trimeric exciton model. Photobiochem. Photobiophys. 7, 277286.Google Scholar
Gurd, F. R. N. & Rothgeb, M. (1979). Motions in proteins. Advances in Protein Chemistry 33, 73165.Google Scholar
Gustafson, T. L., Roberts, D. M. & Chernoff, D. A. (1983). Picosecond transient Raman spectroscopy: the photoisomerization of trans-stilbene. J. chem. Phys. 79, 15591564.Google Scholar
Gustafson, T. L., Roberts, D. M. & Chernoff, D. A. (1984). The structure of electronic excited states in trans-stilbene: picosecond transient Stokes and anti-Stokes Raman spectra. J. chem. Phys. 81, 3438–3433.Google Scholar
Hansson, O., Duranton, J. & Mathis, P. (1988). Yield and lifetime of the primary radical pair in preparations of photosystem II with different antenna size. Biochim. biophys. Acta 932, 9196.Google Scholar
Harvey, S. C. & Cheung, H. C. (1977). Fluorescence depolarization studies on the flexibility of myosin rod. Biochemistry 16, 51815187.Google Scholar
Hayes, J. M. & Small, G. J. (1986). Photochemical hole burning and strong electronphonon coupling: primary donor states of reaction centres of photosynthetic bacteria. J. phys. Chem. 90, 49284931.Google Scholar
Hayward, G., Carlsen, W., Siegman, A. & Stryer, L. (1980). Retinal chromophore of rhodopsin photoisomerizes within picoseconds. Science 211, 942944.Google Scholar
Hefferle, P., Nies, M., Wehrmeyer, W. & Schneider, S. (1983). Picosecond timeresolved fluorescence study of the antenna system isolated from Mastigocladus laminosus Cohn. I. Functionally intact phycobilisomes. Photobiochem. Photobiophys. 5, 4151Google Scholar
Hefferle, P., Geiselhart, P., Mindl, T., Schneider, S., John, W. & Scheer, H. (1984 a). Time-resolved polarized fluorescence of C-phycocyanin and its subunits from Mastigocladus laminosus. Z. Naturforsch. 39c, 606616.Google Scholar
Hefferle, P., John, W., Scheer, H. & Schneider, S. (1984 b). Thermal denaturation of monomeric and trimeric phycocyanins studied by static and polarized time-resolved fluorescence spectroscopy. Photochetn. Photobiol. 39, 221232.Google Scholar
Henry, E. R. & Hochstrasser, R. M. (1987). Molecular dynamics simulations of fluorescence polarization of tryptophans in myoglobin. Proc. natn. Acad. Sci. U.S.A. 84, 61426146.Google Scholar
Henry, E. R., Eaton, W. A. & Hochstrasser, R. M. (1986). Molecular dynamics simulations of cooling in laser-excited haem proteins. Proc. natn. Acad. Sci. U.S.A. 83, 89828986.Google Scholar
Hermann, G., Muller, E., Schubert, D., Wabnitz, H. & Wilhelmi, B. (1982). Fluorescence lifetime of the information processing plant pigment phytochrome. Biochem. Physiol. Pflanz. 177, 687691.Google Scholar
Hershey, H. P., Barker, R. F., Idler, K. B., Lissemore, J. L. & Quail, P. H. (1985). Analysis of cloned cDNA and genomic sequences for phytochrome: complete amino acid sequences for two gene products expressed in etiolated Avena. Nucleic Acids Res. 13, 85438559.Google Scholar
Hiller, R. G. & Goodchild, D. J. (1981). Thylakoid membrane and pigment organization. In The Biochemistry of Plants. Photosynthesis, vol. 8 (ed. Hatch, M. D.Boardman, N. K.Stumpf, P. K. and Conn, E. E.), pp. 149. New York: Academic Press.Google Scholar
Hirsch, M. D., Marcus, M. A., Lewis, A., Mahr, H. & Frigo, N. (1976). A method for measuring picosecond phenomena in photolabile species. The emission lifetime of bacteriorhodopsin. Biophys.J. 16, 13991409.Google Scholar
Hochstrasser, R. M. & Johnson, C. K. (1988). Biological processes studied by ultrafast laser techniques. In Topics in Applied Physics (ed. Kaiser, W.), vol. 60, Ultrashort Laser Pulses and Applications, pp. 357417. Berlin: Springer.Google Scholar
Hochstrasser, R. M. & Negus, D. K. (1984). Picosecond fluorescence decay of tryptophans in myoglobin. Proc. natn. Acad. Sci. U.S.A. 81, 43994403.Google Scholar
Hodges, M. & Moya, I. (1987). Modification of room-temperature picosecond chlorophyll fluorescence kinetics in photosystem II enriched particles by photochemistry. Biochim. biophys. Acta 892, 4247.Google Scholar
Hofrichter, J., Sommer, J. H., Henry, E. R. & Eaton, W. A. (1983). Nanosecond absorption spectroscopy of haemoglobin: elementary processes in kinetic cooperativity. Proc. natn. Acta. Sci. U.S.A. 80, 22352239.CrossRefGoogle ScholarPubMed
Holten, D., Hoganson, C., Windsor, M. W., Schenck, C. C., Parson, W. W., Migus, M. W., Fork, R. L. & Shank, C. V. (1980). Subpicosecond and picosecond studies of electron transfer intermediates in Rhodopseudomonas sphaeroides reaction centre. Biochim. biophys. Acta 592, 461477.Google Scholar
Holten, D., Kirmaier, C. & Parson, W. W. (1986). Picosecond measurements of electron transfer in bacterial photosynthetic reaction centres. In Porphyrins. Excited States and Dynamics (ed. Straub, K. D., Gouterman, M. and Rentzepis, P. M.), pp. 205218. Washington: American Chemical Society.Google Scholar
Holzwarth, A. R. (1985). Energy transfer kinetics in phycobilisomes. In Antennas and Reaction Centres of Photosynthetic Bacteria (ed. Michel-Beyerle, M. E.), pp. 4552. Berlin: Springer.Google Scholar
Holzwarth, A. R. (1986 a). Fluorescence lifetimes in photosynthetic systems. Photochem. Photobiol. 43, 707725.Google Scholar
Holzwarth, A. R. (1986 b). Excited state kinetics of chlorophyll antenna pigments. In Encyclopedia of Plant Physiology: Photosynthesis (New Series) (ed. Staehelin, L. A. and Arntzen, C. J.), 19, pp. 299309. Berlin: Springer.Google Scholar
Holzwarth, A. R. (1987 a). Picosecond fluorescence spectroscopy and energy transfer in photosynthetic antenna pigments. In Topics in Photosynthesis: The Light Reactions, vol. 8 (ed. Barber, J.), pp. 95157. Amsterdam: Elsevier.Google Scholar
Holzwarth, A. R. (1987 b). A model for the functional antenna organization and energy distribution in the photosynthetic apparatus of higher plants and green algae. In Progress in Photosynthesis Research, vol. 1 (ed. Biggins, J.), pp. 5360. Dordrecht: Nijhoff.Google Scholar
Holzwarth, A. R. (1987 c). Pikosekundenstudien zum Energietransfer in Photosynthetischen Antennenpigmenten. Habil.-Schrift Univ. Marburg, pp. 1208.Google Scholar
Holzwarth, A. R. (1988). Time-resolved chlorophyll fluorescence. What kind of information on photosynthetic systems does it provide? In Applications of Chlorophyll Fluorescence (ed. Lichtenthaler, H. K.), pp. 2131. Dordrecht: Kluwer Academic.Google Scholar
Holzwarth, A. R., Lehner, H., Braslavsky, S. E. & Schaffneb, K. (1978). Phytochrome models II: the fluorescence of biliverdin dimethyl ester. Liebigs Ann. Chem. 1978, 20022017.Google Scholar
Holzwarth, A. R., Braslavsky, S. E., Culshaw, S. & Schaffner, K. (1982). The blue anomalous emission of large and small phytochrome. Photochem. Photobiol, 36, 581584.Google Scholar
Holzwarth, A. R., Haehnel, W., Wendler, J., Suter, G. W. & Ratajczak, R. (1984 a). Picosecond fluorescence kinetics and energy transfer in antennae chlorophylls of green algae and membrane fractions of thylakoids. In Advances in Photosynthesis Research, vol. 1 (ed. Sybesma, C.), pp. 7376. The Hague: Nijhoff Publishers.Google Scholar
Holzwarth, A. R., Wendler, J., Ruzsicska, B. P., Braslavsky, S. E. & Schaffner, K. (1984 a). Picosecond time-resolved and stationary fluorescence of oat phytochrome highly enriched in the native 124 kDa protein. Biochim. biophys. Acta 791, 265273.Google Scholar
Holzwarth, A. R., Wendler, J. & Haehnel, W. (1985). Time-resolved picosecond fluorescence spectra of the antenna chlorophylls in Chlorella vulgaris. Resolution of photosystem I fluorescence. Biochim. biophys. Acta 807, 155167.Google Scholar
Holzwarth, A. R., Wendler, J. & Suter, G. W. (1987). Studies on chromophore coupling in isolated phycobiliproteins. II. Picosecond energy transfer kinetics and time-resolved fluorescence spectra of C-phycocyanin from Synechococcus 6301 as a function of the aggregation state. Biophys. J. 51, 112.Google Scholar
Holzwarth, A. R., Bittersmann, E., Reuter, W. & Wehrmeyer, W. (1988). Studies on chromophore coupling in isolated phycobiliproteins. III. Picosecond excited state kinetics and time-resolved fluorescence spectra of different allophycocyanins from Mastigocladus laminosus. Biophys. J. (in the Press).Google Scholar
Holzwarth, A. R., Klein-Boelting, P., Colombano, C., Braslavsky, S. E. & Schaffner, K. (1989). Time-resolved protein fluorescence as a procedure to study protein conformational changes in phytochrome. Biochemistry (submitted).Google Scholar
Honig, B. (1978). Light energy transduction in visual pigments and bacteriorhodopsin. A. Rev. phys. Chem. 29, 3157.Google Scholar
Honig, B., Ebrey, T. G., Callender, R. H., Dinur, U. & Ottolenchi, M. (1979). Photoisomerization, energy storage, and charge separation: A model for light energy transduction in visual pigments and bacteriorhodopsin. Proc. natn. Acad. Sci. U.S.A. 76. 25032507.Google Scholar
Hsieh, C. L., Nagumo, M., Nicol, M. & El-Sayed, M. A. (1981). Picosecond and nanosecond resonance Raman studies of bacteriorhodopsin. Do configuration changes of retinal occur in picoseconds? J. phys. Chem. 85, 27142717.Google Scholar
Hsieh, C. L., El-Sayed, M. A., Nicol, M., Nagumo, M. & Lee, J.-H. (1983). Timeresolved resonance Raman-spectroscopy of the bacteriorhodopsin photocycle on the picosecond and nanosecond time scales. Photochem. Photobiol. 38, 8394.Google Scholar
Hubbard, R. & Kropf, A. (1958). The action of light on rhodopsin. Proc. natn. Acad. Sci. U.S.A. 44, 130139.Google Scholar
Huber, R. (1987). Flexibility and rigidity, requirements for the function of proteins and protein pigment complexes. Biochem. Soc. Trans. 15, 10091020.Google Scholar
Hunt, R. E. & Pratt, L. H. (1979). Phytochrome immunoaffinity purification. Plant Physiol. 64, 332336.Google Scholar
Hutchinson, J. A. & Noe, L. J. (1984). A study of the photodissociation of the CO and O2 forms of hemoglobin and myoglobin by picosecond absorption spectroscopy. IEEE J. Quantum Electron. 20, 13531362.Google Scholar
Ichiye, T. & Karplus, M. (1983). Fluorescence depolarization of tryptophan residues in proteins: a molecular dynamics study. Biochemistry 22, 28842893.Google Scholar
Ide, J. P., Klug, D. R., Kühlbrandt, W., Giorgi, L. B. & Porter, G. (1987). The state of detergent solubilized light-harvesting chlorophyll-a/b protein complex as monitored by picosecond time-resolved fluorescence and circular dichroism. Biochim. biophys. Acta 893, 349364.Google Scholar
Il'Ina, M. D., Krasauskas, V. V., Rotomskis, R. J. & Borisov, A. Y. (1984). Difference picosecond spectroscopy of pigment-protein complexes of photosystem I from higher plants. Biochim. biophys. Acta 767, 501506.Google Scholar
Inoue, Y. & Furuya, M. (1985). Phototransformation of the red-light-absorbing form to the far-red-light-absorbing form of phytochrome in pea epicotyl tissue measured by a multichannel transient spectrum analyser. Plant Cell Physiol. 26, 813819.Google Scholar
Ippen, E. P., Shank, C. V., Lewis, A. & Marcus, M. A. (1978). Subpicosecond spectroscopy of bacteriorhodopsin. Science 200, 12791281.Google Scholar
Jameson, D. M., Gratton, E. & Eccleston, J. F. (1987). Intrinsic fluorescence of elongation factor tu in its complexes with GDP and elongation factor ts. Biochemistry 26, 38943901.Google Scholar
Janes, S. M., Dalickas, G. A., Eaton, W. A. & Hochstrasser, R. M. (1988). Picosecond transient absorption study of photodissociated carboxy hemoglobin and myoglobin. Biophys. J. (in the Press).Google Scholar
John, E. & Jähnig, F. (1989). Dynamics of melittin in water and membranes as determined by fluorescence anisotropy decay. Biophys. J. (in the Press).Google Scholar
Jongeward, K. A., Magde, D., Taube, D. J., Marsters, J. C, Traylor, T. G. & Sharma, V. S. (1988). Picosecond and nanosecond geminate recombination of myoglobin with CO, O2, NO, and isocyanides. J. Am. chem. Soc. 110, 380387.Google Scholar
Jortner, J.. (1980). Dynamics of electron transfer in bacterial photosynthesis. Biochim. biophys. Acta 594, 193230.Google Scholar
Kamogawa, K., Morris, J. M., Takagi, Y., Nakashima, N., Yoshihara, K. & Ikegami, I. (1983). Picosecond fluorescence studies of P700-enriched particles of spinach chloroplasts. Photochem. Photobiol. 37, 207213.Google Scholar
Kaplan, S. & Arntzen, C. J. (1982). Photosynthetic membrane structure and function. In Photosynthesis: Energy Conversion by Plants and Bacteria, vol. 1 (ed. Govindjee, ), pp. 65151. New York: Academic Press.Google Scholar
Karplus, M. (1986). Internal dynamics of proteins. In Methods in Enzymology (ed. Colowick, S. P., Kaplan, N. O., Hirs, C. H. W. and Timasheff, S. N.), no. 131, Enzyme Structure, Part L, pp. 283307. New York: Academic Press.Google Scholar
Karplus, M. (1987 a). Molecular dynamics simulations of proteins. Phys. Today 40, 6872.Google Scholar
Karplus, M. (1987 a). Molecular dynamics of proteins. In Structure and Dynamics of Nucleic Acids, Proteins and Membranes (ed. Chin, E. and Clementi, S.), pp. 113126. New York: Plenum Press.Google Scholar
Karplus, M. & McCammon, J. A. (1981). The internal dynamics of globular proteins. Crit. Rev. Biochem. 9, 293349.Google Scholar
Karplus, M. & McCammon, J. A. (1983). Dynamics of proteins: elements and function. A. Rev. Biochem. 52, 263300.Google Scholar
Karplus, M., Swaminathan, S., Ichiye, T. & Van Gunsteren, W. F. (1983). Local and collective motions in protein dynamics. Ciba Found. Symp. 93, 271283.Google Scholar
Karukstis, K. K. & Sauer, K. (1983). Fluorescence decay kinetics of chlorophyll in photosynthetic membranes. J. cell. Biochem. 23, 131158.Google Scholar
Kaufmann, K. J., Rentzepis, P. M., Stoeckenius, W. & Lewis, A. (1976 a). Primary photochemical processes in bacteriorhodopsin. Biochem. biophys. Res. Commun. 68, 11091115.Google Scholar
Kaufmann, K. J., Sundström, V., Yamane, T. & Rentzepis, P. M. (1976 b). Kinetics of the 580 nm ultrafast bacteriorhodopsin transient. Biophys. J. 22, 121123.Google Scholar
Kirmaier, C. & Holten, D. (1987). Primary photochemistry of reaction centres from the photosynthetic purple bacteria. Photosyn. Res. 13, 225260.Google Scholar
Kirmaier, C. & Holten, D. (1988 a). Subpicosecond spectroscopy of charge separation in Rhodobacter capsulatus reaction centres. Israel J. Chem. (in the Press).Google Scholar
Kirmaier, C. & Holten, D. (1988 b). Temperature effects on the ground state absorption spectra and electron transfer kinetics of bacterial reaction centres. The Photosynthetic Bacterial Reaction Center, pp. 219228.Google Scholar
Kirmaier, C., Holten, D., Feick, R. & Blankenship, R. E. (1983 a). Picosecond measurements of the primary photochemical events in reaction centres isolated from the facultative green photosynthetic bacterium Chloroflexus aurantiacus. Comparison with the purple bacterium Rhodopseudomonas sphaeroides. FEBS Lett. 158, 7378.Google Scholar
Kirmaier, C., Holten, D. & Parson, W. W. (1983 a). Picosecond photodichroism (photoselection) measurements on transient states in reaction centres from Rhodopseudomonas sphaeroides, Rhodospirillurn rubrum and Rhodopseudomonas viridis. Biochim. Biophys. Acta 725, 190202Google Scholar
Kendrick, R. E. & Spruit, C. J. P. (1977). Review article. Phototransformations of phytochrome. Photochem. Photobiol. 26, 201214.Google Scholar
Kirmaier, C., Holten, D., Mancino, L. J. & Blankenship, R. E. (1984). Picosecond photodichroism studies on reaction centres from the green photosynthetic bacterium Chloroflexus aurantiacus. Biochim. biophys. Ada 765, 138146.Google Scholar
Kirmaier, C., Holten, D. & Parson, W. W. (1985 a). The question of the intermediate state P+BChl in bacterial photosynthesis. FEBS Lett. 185, 7682.Google Scholar
Kirmaier, C., Holten, D. & Parson, W. W. (1985 b). Picosecond-photodichroism studies of the transient states in Rhodopseudomonas sphaeroides reaction centres at 5 K. Effects of electron transfer on the 6 bacteriochlorin pigments. Biochim. biophys. Ada 810, 4961.Google Scholar
Kirmaier, C., Holten, D. & Parson, W. W. (1985 c). Temperature and detectionwavelength dependence of the picosecond electron transfer kinetics measured in Rhodopseudomonas sphaeroides reaction centres. Resoluton of new spectral and kinetic components in the primary charge separation process. Biochim. biophys. Ada 810, 3348.Google Scholar
Kirmaier, C, Blankenship, R. E. & Holten, D. (1986). Formation and decay of radical-pair state P+1 -in Chloroflexus aurantiacus reaction centres. Biochim. biophys. Ada 850, 275285.Google Scholar
Knox, R. & Lin, S. (1988). Time resolution and kinetics of “F680” at low temperatures in spinach chloroplasts. Photosynthetic light-harvesting systems, Organization and Function (ed. Scheer, H. and Schneider, S.), pp. 567577. Berlin, New York: de Gruyter.Google Scholar
Kobayashi, T. (1979). Hypsorhodopsin: the first intermediate of the photochemical process in vision. FEBS Lett 106, 313316.Google Scholar
Kobayashi, T. (1980). Existence of hypsorhodopsin as the first intermediate in the primary photochemical process of cattle rhodopsin. Photochem. Photobiol. 32, 207215.Google Scholar
Kobayashi, T., Ohtani, H., Iwai, J.-I., Ikegami, A. & Uchiki, H. (1983). Effect of pH on the photoreaction cycles of bacteriorhodopsin. FEBS Lett. 162, 197200.Google Scholar
Kouyama, T., Kinosita, K. & Ikegami, A. (1988). Structure and function of bacteriorhodopsin. Adv. Biophys. 24, 121173.Google Scholar
Kramer, H. J. M., Pennoyer, J. D., Van Grondelle, R., Westerhui.S, W. H., Niederman, R. A. & Amesz, J. (1984). Low-temperature optical properties and pigment organization of the B875 light-harvesting bacteriochlorophyll-protein complex of purple photosynthetic bacteria. Biochim. biophys. Ada. 767, 335344.Google Scholar
Kronman, M. J. (1976). Changes in emission band shape of proteins undergoing conformational changes. In Biochemical Fluorescence Concepts, vol. 2 (ed. Chen, R. F., and Edelhoch, H.), pp. 487514. New York: Marcel Dekker.Google Scholar
Kryukov, P. G., Lazarev, Y. A., Matveetz, Y. A., Terpugov, E. L., Chekulavea, L. N. & Sharkov, A. V. (1981). Picosecond spectroscopy of deuterated bacteriorhodopsin on the primary photochemical event. Stud. Biophys. 83, 101108.Google Scholar
Kudzmauskas, S., Liuolia, V., Trinkunas, G. & Valkunas, L. (1986). Minor component of the difference absorption spectra of photosynthetic bacteria chromatophores and nonlinear effect during excitation. FEBS Lett. 194, 205209.Google Scholar
hlbrandt, W. (1984). Three-dimensional structure of the light-harvesting chlorophyll a/b-protein complex. Nature 307, 478480.Google Scholar
hlbrandt, W. (1987). 3-dimensional crystals of the light-harvesting chlorophyll a/bprotein complex from pea-chloroplasts (Letter). J. molec. Biol. 194, 757762.Google Scholar
Kulinski, T., Visser, A. J. W. G., O'Kane, D. J. & Lee, J. (1987). Spectroscopic Investigations of the single tryptophan residue and of riboflavin and 7-oxolumazine bound to lumazine apoprotein from photobacterium Leiognathi. Biochemistry 26, 540549.Google Scholar
Lagarias, J. C. (1985). Progress in the molecular analysis of phytochrome. Photochem. Photobiol. 42, 811820.Google Scholar
Lagarias, J. C., Kelly, J. M., Cyr, K. L. & Smith, W. O. (1987). Comparative photochemical anlaysis of highly purified 124 kDalton oat and rye phytochromes in vitro. Photochem. Photobiol. 46, 513.Google Scholar
Lakowicz, J. R., Laczko, G. & Gryczynski, I. (1986). Picosecond resolution of oxytocin tyrosyl fluorescence by 2 GHz frequency-domain fluorometry. Biophys. Chem. 24, 97100.Google Scholar
Lakowicz, J. R., Laczko, G. & Gryczynski, I. (1987). Picosecond resolution of tyrosine fluorescence and anisotropy decays by 2-GHz frequency-domain fluorometry. Biochemistry 26, 8290.Google Scholar
Lakowicz, J. R. & Weber, G. (1973). Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 12, 41714179.Google Scholar
Larkum, A. W. D. & Barrett, J. (1983). Light-harvesting processes in algae (Review). Adv. bot. Res. 10, 1219.Google Scholar
Laws, W. R., Ross, J. B. A., Wyssbrod, H. R., Beechem, J. M., Brand, L. & Sutherland, J. C. (1986). Time-resolved fluorescence and 1H-NMR studies of tyrosine and tyrosine analogues: correlation of NMR-determined rotamer populations and fluorescence kinetics. Biochemistry 25, 599607.Google Scholar
Levin, M. B., Reva, M. G., Rodchenkova, V. V. & Uzhinov, B. M. (1987). A mechanism of the radiative energy transfer in lasing systems. Kvan Electr. 14, 2732.Google Scholar
Levy, R. M. (1982). Initial Fluorescence depolarization of tyrosines in proteins. J. Am. chem. Soc. 104, 20732075.Google Scholar
Levy, R. M., Sheridan, R. P., Keepers, J. W., Swaminathan, S., Karplus, M. & Dubey, G. S. (1985). Molecular dynamics of myoglobin at 298 K. Results from a 300- ps computer simulation. Biophys. J. 48, 509518.Google Scholar
Lewis, A., Spoonhower, J. P. & Perreault, G. J. (1976). Observation of a light emission from a rhodopsin. Nature 260, 675678.Google Scholar
Libertini, L. J. & Small, E. W. (1985). The intrinsic tyrosine fluorescence of histone H l: steady state and fluorescence decay studies reveal heterogenous emission. Biophys. J 47. 765772.Google Scholar
LindqvistL., E. L., E.Mohsni, S., Tfibel, F., Alpert, B. & Andre, J. C. (1979). Intraproteic ligand diffusion in laser-photodissociated carboxyhemoglobin and subunits. Chem. Phys. Lett. 79, 525528.Google Scholar
Lin, S. & Knox, R. S. (1988). Applications of a CP-II model to excitation transfer experiments on light-harvesting chlorophyll a/b-protein complexes. FEBS Lett. 229, 15.Google Scholar
Linschitz, H. & Kasche, V. (1967). Kinetics of phytochrome conversion: Multiple pathway in the Pr to Pfr reaction as studied by double-flash technique. Biochemistry Proc. N.A.S. 598, 10591064.Google Scholar
Linschitz, H., Kasche, V., Butler, W. L. & Siegelman, H. W. (1966). The kinetics of phytochrome conversion. J. biol. Chem. 14, 33953403.Google Scholar
Lippitsch, M. E., Riegler, M., Leitner, A. & Aussenegg, F. R. (1982). Picosecond absorption spectroscopy of biliverdin. In Picosecond Phenomena, vol. in (ed. Eisenthal, K. B., Hochstrasser, R. M., Kaiser, W. and Laubereau, A.), Springer Series in Chemical Physics No. 23, pp. 323326. Berlin: Springer.Google Scholar
Lippitsch, M. E., Riegler, H., Aussenegg, F. R., Hermann, G. & Mijller, E. (1988). Picosecond absorption and fluorescence studies on large phytochrome from rye. Biochem. Physiol. Pflanz. 183, 16.Google Scholar
Livesey, A. K. & Brochon, J. C. (1987). Analyzing the distribution of decay constants in pulse-fluorimetry using the maximum entropy method. Biophys. J. 52, 693706.Google Scholar
Longworth, J. W. (1971). Luminescence of polypeptides and proteins. In Excited States of Proteins and Nucleic Acids (ed. Steiner, R. F., and Weinryb, I.), pp. 319484. New York: Plenum Press.Google Scholar
Longworth, J. W. (1983). Intrinsic fluorescence of proteins. In Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology (ed. Cundall, R. B. and Dale, R. E.), NATO ASI Series A, No. 69, pp. 651725. New York: Plenum Press.Google Scholar
Loppnow, G. R. & Mathies, R. A. (1988). Excited-state structure and isomerization dynamics of the retinal chromophore in rhodopsin from resonance Raman intensities. Biophys. J. 54, 3543.Google Scholar
Lotshaw, W. T., Alberte, R. S. & Fleming, G. R. (1982). Low-intensity subnanosecond fluorescence study of the light-harvesting chlorophyll a/b protein. Biochim. biophys. Acta 682, 7585.Google Scholar
Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Bacteriorhodopsin: a light-driven proton pump in Halobacterium halobium. Biophys. J. 15, 955962.Google Scholar
Lux, B., Baudier, J. & Gerard, D. (1985). Tyrosyl fluorescence spectra of proteins lacking tryptophan: effects of intramolecular interactions. Photochem. Photobiol. 42, 245251.Google Scholar
Maliwal, B. P., Hermetter, A. & Lakowicz, J. R. (1986). A study of protein dynamics from anisotropy decays obtained by variable frequency phase-modulation fluorometry: internal motions of n-methylanthraniloyl melittin. Biochim. biophys. Acta 873, 173181.Google Scholar
Maliwal, B. P. & Lakowicz, J. R. (1986). Resolution of complex anisotropy decays by variable frequency phase-modulation fluorometry: a simulation study. Biochim. biophys. Acta 873, 161172.Google Scholar
Marcus, R. A. (1964). Chemical and electrochemical electron-transfer theory. A. Rev. phys.Chem. 15, 155196.Google Scholar
Marcus, R. A. (1987). Superexchange versus an intermediate mechanism in reaction centers of photosynthetic bacteria. Chem. Phys. Lett. 133, 471477.Google Scholar
Marcus, M. A. & Lewis, A. (1977). Kinetic resonance Raman spectroscopy: dynamics of deprotonation of the Schiff base of bacteriorhodopsin. Science 195, 1328–1230.Google Scholar
Martin, J. L., Migus, A., Poyari, C., Lecarpentier, Y., Astier, R. & Antonetti, A. (1983 a). Spectral evidence for sub-picosecond iron displacement after ligand detachment from hemoproteins by femtosecond light pulses. EMBO J. 2, 18151819.Google Scholar
Martin, J. L., Migus, A., Poyart, C., Lecarpentier, Y., Astier, R. & Antonetti, A., (1983 b). Femtosecond photolysis of Co-ligated protoheme and hemoproteins: appearance of deoxy species with a 350-fsec time constant. Proc. natn. Acad. Sci. U.S.A. 80, 173177.Google Scholar
Martin, J. L., Migus, A., Poyart, C., Lecarpentier, Y., Astier, A. & Antonetti, A., (1984). Resolution of the femtosecond lifetime species involved in the photodissociation process of heme proteins and protoheme. In Ultrafast Phenomena, vol. iv (ed. Auston, D. H. and Eisenthal, K. B.), Springer Series in Chemical Physics, No. 38, pp. 447451. Berlin: Springer.Google Scholar
Martin, J.-L., Breton, J., Hoff, A. J., Migus, A. & Antonetti, A. (1986). Femtosecond spectroscopy of electron transfer in the reaction centre of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26. Direct electron transfer from the dimeric bacteriochlorophyll primary donor to the bacteriopheophytin acceptor with a time constant 2·8 ± 0·2 psec. Proc. natn. Acad. Sci. U.S.A. 83, 957961.Google Scholar
Martin, J. L., Breton, J., Lambry, J. C. & Fleming, G. (1988). The primary electron transfer in photosynthetic purple bacteria: long range electron transfer in the femtosecond domain at low temperature. In The Photosynthetic Bacterial Reaction Centre (ed. Breton, J., and Vermeglio, A.), Structure and Dynamics, pp. 195203. New York: Plenum Press.Google Scholar
Mathies, R. A. (1983). Resonance Raman investigation of the primary photochemistry in visual pigments and bacteriorhodopsin. In Front. Biochem. Biophys. Studies of Proteins and Membranes, vol. 82 (ed. Liu, Teh-Yung), pp. 367386. New York.Google Scholar
Mathies, R. A., Cruz, C. H. B., Pollard, W. T. & Shank, C. V. (1988). Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. Science 240, 777779.Google Scholar
Matsuoka, S., Shichida, Y. & Yoshizawa, T. (1984). Formation of hypsorhodopsin at room temperature by picosecond green pulse. Biochim. biophys. Acta 765, 3842.Google Scholar
Matthews, B. W. & Fenna, R. E. (1980). Structure of a green bacteriochlorophyll protein. Ace. Chem. Res. 13, 309317.Google Scholar
Matveetz, Y. A., Chekalin, S. V. & Sharkov, A. V. (1985). Molecular dynamics of primary photoprocesses in bacteriorhodopsin: subpicosecond study of absorption and luminescence kinetics. J. opt. Soc. Am. B. 2, 634639.Google Scholar
Matveets, Y. A., Chekalin, S. V. & Yartsev, A. P. (1986). Femtosecond energy transfer in the physical steps of photosynthesis. JETP Lett. 43, 707708.Google Scholar
Mauzerall, D. C. (1985). Evidence that the variable fluorescence in Chlorella is recombination luminescence. Biochim. biophys. Acta 809, 1116.Google Scholar
Maxson, P., Sauer, K. & Glazer, A. N. (1988). Fluorescence spectroscopy of allophycocyanin complexes from Synechococcus 6301 strain AN112. In Photosynthetic Light-Harvesting Systems (ed. Scheer, H., and Schneider, S.), Organization and Function pp. 439449. Berlin: de Gruyter.Google Scholar
McCammon, J. A. & Karplus, M. (1983). The dynamic picture of protein structure. Ace. Chem. Res. 16, 187193.Google Scholar
McCauley, S. W., Bittersmann, E. & Holzwarth, A. R. (1989). Time resolved ultrafast blue-shifted fluorescence from pea chloroplasts. FEBS Lett, (in the Press).Google Scholar
McCauley, S. W. & Holzwarth, A. R. (1989). Picosecond chlorophyll fluorescence from higher plant chloroplasts. I. Blue-shifted fluorescence as a probe of ultrafast equilibration in the photosynthetic antenna. Biophys. J. (submitted).Google Scholar
Meech, S. R., Hoff, A. J. & Wiersma, D. A. (1985). Evidence for a very early intermediate in bacterial photosynthesis. A photon-echo and hole-burning study of the primary donor band in Rhodopseudomonas sphaeroides. Chem. Phys. Lett. 121, 287292.Google Scholar
Meech, S. R., Hoff, A. J. & Wiersma, D. A. (1986). Role of charge-transfer states in bacterial photosynthesis. Proc. natn. Acad. Sci. U.S.A. 83, 94649468.Google Scholar
Mendelson, R. A., Morales, M. F. & Botts, J. (1973). Segmental flexibility of the S-1 moiety of myosin Biochemistry 12, 22502255.Google Scholar
Michel-Beyerle, M. E., Plato, M., Deisenhofer, J., Michel, H., Bixon, M. & Jortner, J. (1988). Unidirectionality of charge separation in reaction centres of photosynthetic bacteria. Biochim. biophys. Acta 932, 5270.Google Scholar
Mimuro, M., Yamazaki, I., Yamazaki, T. & Fujita, Y. (1985). Excitation energy transfer in the chromatically adapted phycobilin systems of blue-green algae: difference in the energy transfer kinetics at phycocyanin level. Photochem. Photobiol. 41, 597603.Google Scholar
Mimuro, M., Yamazaki, I., Tamai, N., Yamazaki, T. & Fujita, Y. (1987). Analysis of pigment system I Chi a fluorescence at room temperature by the steady state spectrum and the time resolved spectrum in picosecond time range. In Progress in Photosynthesis Research, vol. 1 (ed. Biggins, J.), pp. 9194. Dordrecht: Nijhoff.Google Scholar
Monger, T. G., Alfano, R. R. & Callender, R. H. (1979). Photochemistry of rhodopsin and isorhodopsin investigated on a picosecond time scale. Biophys. J. 27, 105115.Google Scholar
Moon, D.-K., Jeen, G.-S. & Song, P.-S. (1985). The effect of deuterium oxide on the fluorescence and phototransformation of 124 kDalton phytochrome. Photochem. Photobiol. 42, 633641.Google Scholar
Moore, J. N., Hansen, P. A. & Hochstrasser, R. M. (1988). Iron-carbonyl bond geometries of carboxymyoglobin and carboxyhemoglobin in solution determined by picosecond time-resolved infrared spectroscopy. Proc. natn. Acad. Sci. U.S.A. 85, 50625066.Google Scholar
Mörschel, E., Koller, K.-P. & Wehrmeyer, W. (1980). Biliprotein assembly in the disc-shaped phycobilisomes of Rhodella violacea. Electron microscopical and biochemical anlayses of C-phycocyanin and allophycocyanin aggregates. Arch. Microbiol. 125, 4351.Google Scholar
Mukerji, I. & Sauer, K. (1988). Temperature dependent steady state and picosecond kinetic fluorescence measurements of a photosystem I preparation from spinach. C.S. French Symposium on Photosynthesis. New York, (in the Press).Google Scholar
Munro, I., Pecht, I. & Stryer, L. (1979). Subnanosecond motions of tryptophan residues in proteins. Proc. natn. Acad. Sci. U.S.A. 76, 5660.Google Scholar
Nagumo, M., Nicol, M. & El-Sayed, M. A. (1981). Polarized resonance Raman spectroscopy of the photointermediate of oxyhemoglobin on the picosecond time scale. J. phys. Chem. 85, 24352438.Google Scholar
Nanba, O. & Satoh, K. (1987). Isolation of a photosystem II reaction centre consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc. natn. Acad. Sci. U.S.A. 84, 109112.Google Scholar
Noe, L. J. (1982). The study of the primary events in the photolysis of hemoglobin and myoglobin using picosecond spectroscopy. In Biological Events Probed by Ultrafast Laser Spectroscopy. (ed. Alfano, R. R.), pp. 339355. New York: Academic Press.Google Scholar
Nordlund, T. M. (1988). Streak camera methods in nucleic acid and protein spectroscopy. SPIE 909, 3550.Google Scholar
Nordlund, T. M. & Podolski, D. A. (1983). Streak camera measurement of tryptophan and rhodamine motions with picosecond time resolution. Photochem. Photobiol. 38, 665669.Google Scholar
Nuijs, A. M., Van Grondelle, R., Joppe, H. L. P.Van Bochove, A. C. & Duysens, L. N. M. (1985 a). Singlet and triplet excited carotenoid and antenna bacteriochlorophyll of the photosynthetic purple bacterium Rhodospirillum rubrum as studied by picosecond absorbance difference spectroscopy. Biochim. biophys. Acta 810, 94105.Google Scholar
Nuijs, A. M., Vasmel, H., Joppe, H. L. P.Duysens, L. N. M. & Amesz, J. (1985 b). Excited states and primary charge separation in the pigment system of the green photosynthetic bacterium Prosthecochloris aestuarii as studied by picosecond absorbance difference spectroscopy. Biochim. biophys. Acta 807, 2434.Google Scholar
Nuijs, A. M., Shuvalov, V. A., Van Gorkom, H. J., Plijter, J. J. & Duysens, L. N. M. (1986 a). Picosecond absorbance difference spectroscopy on the primary reactions and the antenna-excited states in photosystem I particles. Biochim. biophys. Acta 850, 310318.Google Scholar
Nuijs, A. M., Van Gorkom, H. J., Plijter, J. J. & Duysens, L. N. M. (1986 b). Primary-charge separation and excitation of chlorophyll a in photosystem II particles from spinach as studied by picosecond absorbance-difference spectroscopy. Biochim. biophys. Acta 848, 167175.Google Scholar
Nuss, M. C., Zinth, W., Kaiser, W., Kölling, E. & Oesterhelt, D. (1985). Femtosecond spectroscopy of the first events of the photochemical cycle in bacteriorhodopsin. Chem. Phys. Lett. 117, 17.Google Scholar
Oesterhelt, D., Meentzen, M. & Schumann, L. (1973). Reversible dissociation of purple complex in bacteriorhodopsin and identification of 13-cts and all-trars-retinal as its chromophores. Eur. J. Biochem. 40, 453463.Google Scholar
Oesterhelt, D. & Stoeckenius, W. (1973). Functions of a new photoreceptor membrane. Proc. natn. Acad. Sci. U.S.A. 70, 28532857.Google Scholar
Okamura, M. Y., Feher, G. & Nelson, N. (1982). Reaction centres. In Photosynthesis (ed. Govindjee, ), vol. 1: Energy Conversion by Plants and Bacteria, pp. 195272. New York: Academic Press.Google Scholar
Ohtani, H., Kobayashi, T., Iwai, J.-I. & Ikegami, A. (1986). Picosecond and nanosecond spectroscopies of the photochemical cycles of acidified bacteriorhodopsin. Biochemistry 25, 33563363.Google Scholar
Olson, J. M. (1980). Chlorophyll organization in green photosynthetic bacteria. Biochim. biophys. Acta 594, 3351.Google Scholar
Ottolenghi, M. (1980). The photochemistry of rhodopsins. Adv. Photochem. 12, 99201.Google Scholar
Ovchinnikov, Y. A. (1982). Rhodopsin and bacteriorhodopsin: structure-function relationships. FEBS Letts 148, 179191.Google Scholar
Owens, T. G., Webb, S. P., Mets, L., Alberte, R. S. & Fleming, G. R. (1987). Antenna size dependence of fluorescence decay in the core antenna of photosystem I: estimates of charge separation and energy transfer rates. Proc. natn. Acad. Sci. U.S.A. 84, 15321536.Google Scholar
Owens, T. G., Webb, S. P., Alberte, R. S., Mets, L. & Fleming, G. R. (1988 a). Antenna structure and excitation dynamics in photosystem I. I. Studies of detergentisolated photosystem I preparations using time-resolved fluorescence analysis. Biophys. J. 53, 733745.Google Scholar
Owens, T. G., Webb, S. P., Mets, L., Alberte, R. S. & Fleming, G. R. (1988 b). Antenna structure and excitation dynamics in photosystem I. II. Studies with photosynthetic mutants of Chlamydomonas reinhardtii lacking photosystem II. Biophys. J. (in the Press).Google Scholar
Pande, J., Callender, R. H. & Ebrey, T. G. (1981). Resonance Raman study of the primary photochemistry of bacteriorhodopsin. Proc. natn. Acad. Sci. U.S.A. 78, 73797382.Google Scholar
Parkhurst, L. J. (1979). Hemoglobin and myoglobin ligand kinetics. A. Rev. phys. Chem. 30, 503546.Google Scholar
Parson, W. W. (1974). Bacterial Photosynthesis. A. Rev. Microbiol. 28, 4159.Google Scholar
Parson, W. W. & Ke, B. (1982). Primary photochemical reactions. In Photosynthesis: Energy Conversion by Plant and Bacteria, vol. 1 (ed. Govindjee, ), pp. 331385. New York: Academic Press.Google Scholar
Paschenko, V. Z., Korvatovskii, B. N., Kononenko, A. A., Chamorovsky, S. K. & Rubin, A. B. (1985). Estimation of the rate of photochemical charge separation in Rhodopseudomonas sphaeroides reaction centres by fluorescence and absorption picosecond spectroscopy. FEBS Lett. 191, 245248.Google Scholar
Pashchenko, V. Z., Avramov, L. A., Vasil'Ev, S. S., Gorokhov, V. V., Korvatovskii, B. N., Kukarskikh, G. P. & Rubin, A. B. (1986). Picosecond spectroscopy of charge separation and recombination processes in reaction centres of photosystem I in higher plants. Molec. Biol. 20, 755764.Google Scholar
Pearlstein, R. M. (1982). Exciton migration and trapping in photosynthesis. Photochem. Photobiol. 35, 835844.Google Scholar
Pellegrino, F., Dagen, A., Sekuler, P. & Alfano, R. R. (1983). Temperature dependence of the 735 nm fluorescence kinetics from spinach measured by picosecond laser-streak camera system. Photobiochem. Photobiophys. 6, 1523.Google Scholar
Pellin, M. J., Wraight, C. A. & Kaufmann, K. J. (1978). Modulation of the primary electron transfer rate in photosynthetic reaction centres by reduction of a secondary acceptor. Biophys. J., 361369.Google Scholar
Perrin, F. (1936). Brownian movement of an ellipsoidal body. Free rotation and depolarization of fluorescence. Translation and diffusion of ellipsoidal molecules. J. Phys. Radium VII 1, 111.Google Scholar
Perutz, M. F. (1970). Stereochemistry of cooperative effects in haemoglobin. Haemhaem interaction and the problem of allostery. Nature 228, 726734.Google Scholar
Perltz, M. F. & Mathews, F. S. (1966). An X-ray study of azide methaemoglobin. J. molec. Biol. 21, 199202.Google Scholar
Perutz, M. F., Rossmann, M. G., Cullis, A. F., Muirhead, H., Will, G. & North, A. C. T. (1960). Structure of haemoglobin. A three-dimensional Fourier synthesis at 5·5 A resolution, obtained by X-ray analysis. Nature 185, 416422.Google Scholar
Peters, K. S., Applebury, M. L. & Rentzepis, P. M. (1977). Primary photochemical event in vision: proton translocation. Proc. natn. Acad. Sci. U.S.A. 74, 31193123.Google Scholar
Peters, K. S. & Leontis, N. (1982). Dynamics of the primary events in vision. In Biological Events Probed by Ultrafast Laser Spectroscopy (ed. Alfano, R. R.), pp. 259269, New York: Academic Press.Google Scholar
Petrich, J. W., Chang, M. C.McDonald, D. B. & Fleming, G. R. (1983). On the origin of non-exponential fluorescence decay in tryptophan and its derivatives. J. Am. chem. Soc. 105, 38243832.Google Scholar
Petrich, J. W., Breton, J., Martin, J. L. & Antonetti, A. (1987 a). Femtosecond absorption spectroscopy of light-adapted and dark-adapted bacteriorhodopsin. Chem. Phys. Lett. 137, 369375.Google Scholar
Petrich, J. W., Longworth, J. W. & Fleming, G. R. (1987 b). Internal motion and electron transfer in proteins: a picosecond fluorescence study of three homologous azurins. Biochemistry 26, 27112722.Google Scholar
Petrich, J. W., Martin, J. L., Houde, D., Poyart, C. & Orszag, A. (1987 c). Timeresolved Raman spectroscopy with subpicosecond resolution: vibrational cooling and delocalization of strain-energy in photodissociated (carbonmonoxy)hemoglobin. Biochemistry 26, 79147923.Google Scholar
Pettei, M. J., Yudd, A. P., Nakanishi, K., Henselman, R. & Stoeckenius, W. (1977). Identification of retinal isomers isolated from bacteriorhodopsin. Biochemistry 16, 19551959.Google Scholar
Philips, L. A., Webb, S. P., Martinez, S. J., Fleming, G. R. & Levy, D. H. (1988). Time-resolved spectroscopy of tryptophan conformers in a supersonic jet. J. Am. chem. Soc. 110, 13521355.Google Scholar
Pin, S., Valat, P., Tourbez, H. & Alpert, B. (1986). CO cage recombination in hemoglobin. Picosecond photolysis and nanosecond observation. Chem. Phys. Lett. 128, 7983.Google Scholar
Plato, M. & Möbius, K. (1988). Intermolecular electronic interactions in the primary charge separation in bacterial photosynthesis. J. Am. chem. Soc. (in the Press).Google Scholar
Polland, H.-J., Franz, M. A., Zinth, W., Kaiser, W., Rolling, E. & Oesterhelt, D. (1984). Optical picosecond studies of bacteriorhodopsin containing a sterically fixed retinal. Biochim. biophys. Acta 767, 635639.Google Scholar
Polland, H.-J., Franz, M. A., Zinth, W., Kaiser, W., Hegemann, P. & Oesterhelt, D. (1985). Picosecond events in the photochemical cycle of the light driven chloridepump halorhodopsin. Biophys. J. 47, 5559.Google Scholar
Polland, H.-J., Franz, M. A., Zinth, W., Kaiser, W., Rolling, E. & Oesterhelt, D. (1986). Eariy picosecond events in the photocycle of bacteriorhodopsin. Biophys. J. 49, 651662.Google Scholar
Pratt, L. H. (1982). Phytochrome: the protein moiety. A. Rev. Plant Physiol. 33, 557582.Google Scholar
Pratt, L. H., Shimazaki, Y., Inoue, Y. & Furuya, M. (1982). Analysis of phototransformation intermediates in the pathway from the red-absorbing to the far-redabsorbing form of avena phytochrome by a multichannel transient spectrum analyzer. Photochem. Photobiol. 36, 471477.Google Scholar
Rayner, D. M. & Szabo, A. G. (1978). Time resolved fluorescence of aqueous tryptophan. Can. J. Chem. 56, 743745.Google Scholar
Reisberg, P., Nairn, J. A. & Sauer, K. (1982). Picosecond fluorescence kinetics in spinach chloroplasts at low temperature. Photochem. Photobiol. 36, 657661.Google Scholar
Reuter, W. & Wehrmeyer, W. (1988). Core substructure in Mastigocladus laminosus phycobilisomes. I. Microheterogeneity in two of three allophycocyanin core complexes. Arch. Microbiol. 150, 534540.Google Scholar
Rigler, R. (1977). Fluorescence relaxation and correlation spectroscopy in the analysis of conformational dynamics. Trends biochem. Sci. 2, 252254.Google Scholar
Rigler, R. & Ehrenberg, M. (1973). Molecular interactions and structure as analysed by fluorescence relaxation spectroscopy. Q. Rev. Biophys. 6, 139199.Google Scholar
Robbins, R. J., Fleming, G. R., Beddard, G. S., Robinson, G. W., Thistlethwaite, P. J. & Woolfe, G. J. (1980). Photophysics of aqueous tryptophan: pH and temperature effects. J. Am. chem. Soc. 102, 62716279.Google Scholar
Rosato, N., Finazzi-Agro', A., Gratton, E., Stefanini, S. & Chiancone, E. (1987). Time-resolved fluorescence of apoferritin and its subunits. J. biol. Chem. 262, 44874491.Google Scholar
Rosenfeld, T., Honig, B., Ottolenghi, M., Hurley, J. & Ebrey, T. G. (1977). Cis-trans isomerization in the photochemistry of vision. Pure appl. Chem. 49, 341351.Google Scholar
Ross, J. B. A., Laws, W. R., Buku, A., Sutherland, J. C. & Wyssbrod, H. R. (1986 a). Time-resolved fluorescence and 1-NMR studies of tyrosyl residues in oxytocin and small peptides: correlation of NMR-determined conformations of tyrosyl residues and fluorescence decay kinetics. Biochemistry 25, 607612.Google Scholar
Ross, J. B. A., Laws, W. R., Sutherland, J. C., Buku, A., Katsoyannis, P. G., Schwartz, L. L. & Wyssbrod, H. R. (1986 b). Linked-function analysis of fluorescence decay kinetics: resolution of side-chain rotamer populations of a single aromatic acid in small polypeptides. Photochem. Photobiol. 44, 365370.Google Scholar
Ross, J. B. A., Rousslang, K. W. & Brand, L. (1981). Time-resolved fluorescence and anisotropy decay of the tryptophan in adrenocorticotropin. Biochemistry 20, 43614369.Google Scholar
Rothschild, K. J., Marrero, H., Braiman, M. & Mathies, R. (1984). Primary photochemistry of bacteriorhodopsin: comparison of Fourier transform infrared difference spectra with resonance Raman spectra. Photochem. Photobiol. 40, 675679.Google Scholar
Rüdiger, W. (1980). Phytochrome, a light receptor of plant photomorphogenesis. In Structure and Bonding, vol. 40 (ed. Rüdiger, W.), pp. 101140. Berlin: Springer.Google Scholar
Rüdiger, W. (1983). Chemistry of the phytochrome photoconversions. Phil. Trans. R. Soc. London B 303, 377386.Google Scholar
Rüdiger, W., Thummler, F., Cmiel, E. & Schneider, S. (1983). Chromophore structure of the physiologically active form (Pfr) of phytochrome. Proc. natn. Acad. Sci. U.S.A. 80, 62446248.Google Scholar
Rudzki, J. E. & Peters, K. S. (1984). Picosecond absorption studies on rhodopsin and isorhodopsin in detergent and native membrane. Biochemistry 23, 38433848.Google Scholar
Ruggiero, A., Todd, D. & Fleming, G. R. (1988). The effect of overlapping and electronic excited states on the subpicosecond fluorescence anisotropy decay behaviour of tryptophan in water. In Ultrafast Phenomena, vol. vi (ed. Yajima, T., Yoshihara, K., Harris, C. B., and Shionoya, S.), Springer Series in Chemical Physics, No. 48, pp. 477479. Berlin: Springer.Google Scholar
Rutherford, A. W. & Heathcote, P. (1985). Primary photochemistry in photosystem I. Photosyn. Res. 6, 295316.Google Scholar
Ruzsicska, B. P., Braslavsky, S. E. & Schaffner, K. (1985). The kinetics of the early stages of the phytochrome phototransformation Pr → Pfr. A comparative study of small (60 kDalton) and native (124kDalton) phytochromes from oat. Photochem. Photobiol. 41, 681688.Google Scholar
Sandorfy, C. (1984). The photochemical primary step and the potential in the proton bridge of the chromophore of visual pigments and bacteriorhodopsin. Int. J. Quant. Chem. 26, 907915.Google Scholar
Sandström, A., Gillbro, T., Sundstrom, V., Fischer, R. & Scheer, H. (1988 a). Picosecond time-resolved energy transfer within C-phycocyanin aggegates of Mastigocladus laminosus. Biochim. biophys. Acta 933, 4253.Google Scholar
Sandström, A., Gillbro, T., Sundstrom, V., Wendler, J. & Holzwarth, A. R. (1988 b). Picosecond study of energy transfer within 18-S particles of AN 112 (a mutant of Synechococcus 6301) phycobilisomes. Biochim. biophys. Acta 933, 5464.Google Scholar
Sarai, A. (1979). Energy-GAP and temperature dependence of electron and excitation transfer in biological systems. Chem. Phys. Lett. 63, 360366.Google Scholar
Sarkar, H. K. & Song, P.-S. (1982). Nature of phototransformation of phytochrome as probed by intrinsic tryptophan residues. Biochemistry 21, 19671972.Google Scholar
Sauer, K. (1978). Photosynthetic membranes. Ace. Chem. Res. 11, 257264.Google Scholar
Sauer, K. & Scheer, H. (1988). Excitation transfer in C-phycocyanin. Forster transfer rate and exciton calculation based on new crystal structure data for C-phycocyanins from Agmenellum quadruplicatum and Mastigocladus laminosus. Biochim. Biophys. Ada 936, 157170.Google Scholar
Sauer, K., Scheer, H. & Sauer, P. (1987). Forster transfer calculations based on crystal structure data from Agmenellum quadruplicatum C-phycocyanin. Photochem. Photobiol. 46, 427440.Google Scholar
Scarlata, S., Rholam, M. & Weber, G. (1984). Frictional resistance to local rotations of aromatic fluorophores in some small peptides. Biochemistry 23, 67896792.Google Scholar
Schaffner, K., Braslavsky, S. E. & Holzwarth, A. R. (1985). Recent advances in the photophysics and photochemistry of small, large, and native oat phytochromes. In Optical Properties and Structure of Tetrapyrroles (ed. Blauer, G., and Sund, H.), pp. 367382. Berlin: de Gruyter.Google Scholar
Schaffner, K., Braslavsky, S. E. & Holzwarth, A. R. (1989). Photophysics and photochemistry of phytochrome, a regulator of photomorphogenesis in plants. In Advances in Photochemistry, vol. 15 (ed. Volman, D., Hammond, G.S., and Gollnick, K.), (in the Press).Google Scholar
Schatz, G. H., Brock, H. & Holzwarth, A. R. (1987). Picosecond kinetics of fluorescence and absorbance changes in photosystem II particles excited at low photon density. Proc. natn. Acad. Sci. U.S.A. 84, 84148418.Google Scholar
Schatz, G. H., Brock, H. & Holzwarth, A. R. (1988). A kinetic and energetic model for the primary processes in photosystem II. Biophys. J. 54, 397405.Google Scholar
Schatz, G. H. & Holzwarth, A. R. (1986). Mechanisms of chlorophyll fluorescence revisited: prompt or delayed emission from photosystem II with closed reaction centres? Photosynth. Res. 10, 309318.Google Scholar
Schatz, G. H. & Holzwarth, A. R. (1987). Picosecond time resolved chlorophyll fluorescence spectra from pea chloroplast thylakoids. In Progress in Photosynthesis Research, vol. 1 (ed. Biggins, J.), pp. 6769. Dordrecht: Nijhoff.Google Scholar
Scheer, H. (1981). Biliproteine. Angew. Chem. 93, 230250.Google Scholar
Scheer, H. (1982). Phycobiliproteins: molecular aspects of a photosynthetic antenna system. In Mol. Biol. Biochem. Biophys., vol. 35 (ed. Fong, F. K.), pp. 745. Berlin: Springer.Google Scholar
Scheer, H. (1986). Excitation transfer in phycobiliproteins. In Encyclopedia of Plant Physiology: Photosynthesis III, vol. 19 (ed. Staehelin, L. A., and Arntzen, C. J.), pp. 327337. Berlin: Springer.Google Scholar
Scherz, A. & Parson, W. W. (1984). Oligopolymers of bacteriochlorophyll and bacteriopheophytin with spectroscopic properties resembling those found in photosynthetic bacteria. Biochim. biophys. Acta 766: 653665.Google Scholar
Schirmer, T., Huber, R., Schneider, M., Bode, W., Miller, M. & Hackert, M. L. (1986). Crystal structure analysis and refinement at 2·5 A of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light harvesting. J. molec. Biol. 188, 651676.Google Scholar
Schlodder, E. & Brettel, K. (1988). Primary charge separation in closed photosystem II with a lifetime of 11 ns. Flash-absorption spectroscopy with O2-evolving photosystem II complexes from Synechococcus. Biochim. biophys. Acta 933, 2234.Google Scholar
Schneider, S., Geiselhart, P., Siebzehnrubl, S., Fischer, R. & Scheer, H. (1988). Energy transfer within PC trimers of Mastigocladus laminosus studied by picosecond time-resolved transient absorption spectroscopy. Z. Naturforsch. 43C, 5562.Google Scholar
Schobert, B. & Lanyi, J. K. (1982). Halorhodopsin is a light-driven chloride pump. J. biol. Chem. 257, 1030610313.Google Scholar
Searle, G. F. W., Barber, J., Porter, G. & Tredwell, C. J. (1978). Picosecond timeresolved energy transfer in Porphyridium cruentum. Part II. In the isolated light harvesting complex (phycobilisomes). Biochim. biophys. Acta 501, 246256.Google Scholar
Searle, G. F. W., Tamkivi, R., Van Hoek, A. & Schaafsma, T. J. (1988). Temperature dependence of antenna chlorophyll fluorescence kinetics in photosystem I reaction centre protein. J. Chem. Soc. Farad. Trans. II 84, 315327.Google Scholar
Shank, C. V. (1983). Measurement of ultrafast phenomena in the femtosecond time domain. Science 219, 10271031.Google Scholar
Shank, C. V. (1988). Generation of Ultrashort optical pulses. In Ultrashort Laser Pulses and Applications (ed. Kaiser, W.), vol. 60: Topics in Applied Physics, pp. 534. Berlin: Springer.Google Scholar
Shank, C. V. & Greene, V.I. (1982). Subpicosecond ultrafast laser technique - Application and design. In Biological Events Probed by Ultrafast Laser Spectroscopy (ed, Alfano, R. R.), pp. 417427. New York: Academic Press.Google Scholar
Shank, C. V. & Ippen, E. P. (1976). Time-resolved spectroscopy of hemoglobin and its complexes with subpicosecond optical pulses. Science 193, 5051.Google Scholar
Sharkov, A. V., Matveetz, Y. A., Chekalin, S. V., Konyashchenko, A. V., Brekhov, O. M. & Rootskoy, B. Y. (1983). Fluorescence of bacteriorhodopsin under subpicosecond light excitation. Photochem. Photobiol. 38, 108111.Google Scholar
Sharkov, A. V., Pakulev, A. V., Chekalin, S. V. & Matveetz, Y. A. (1985). Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy. Biochim. biophys. Acta 808, 94102.Google Scholar
Shepanski, J. F. & Knox, R. S. (1981). Circular dichroism and other optical properties of antenna chlorophyll proteins from higher plants. Israel J. Chem. 21, 325331.Google Scholar
Shichida, Y., Yoshizawa, T., Kobayashi, T., Ohtani, H. & Nagakura, S. (1977). Squid hypsorhodopsin and bathorhodopsin by a picosecond laser photolysis. FEBS Lett. 80, 214216.Google Scholar
Shichida, Y., Kobayashi, T., Ohtani, H., Yoshizawa, T. & Nagakura, S. (1978). Picosecond laser photolysis of squid rhodopsin at room and low temperatures. Photochem. Photobiol. 27, 335341.Google Scholar
Shichida, Y., Matuoka, S., Hidaka, Y. & Yoshizawa, T. (1983). Absorption spectra of intermediates of bacteriorhodopsin measured by laser photolysis at room temperatures. Biochim. biophys. Acta 723, 240246.Google Scholar
Shichida, Y., Matuoka, S. & Yoshizawa, T. (1984). Formation of photorhodopsin, a precursor of bathorhodopsin, detected by picosecond laser photolysis at room temperature. Photobiochem. Photobiophys. 7, 221228.Google Scholar
Shulman, R. G., Hopfield, J. J. & Ogawa, S. (1975). Allosteric interpretation of haemoglobin properties. Q. Rev. Biophys. 8, 325420.Google Scholar
Shuvalov, V. A. & Parson, W. W. (1981 a). Energies and kinetics of radical pairs involving bacteriochlorophyll and bacteriopheophytin in bacterial reaction centres. Proc. natn. Acad. Sci. U.S.A. 78, 957961.Google Scholar
Shuvalov, V. A. & Parson, W. W. (1981 b). Triplet-states of monomeric bacteriochlorophyll in vitro and of bacteriochlorophyll dimers in antenna and reaction centre complex. Biochim. biophys. Acta 638, 5059.Google Scholar
Shuvalov, V. A. & Klevanik, A. V. (1983). The study of the state P870 + B800 → in bacterial reaction centres by selective picosecond and low-temperature spectroscopies. FEBS Lett. 160, 5155.Google Scholar
Shuvalov, V. A., Klevanik, A. V., Sharkov, A. V., Matveetz, J. A. & Krukov, P. G. (1978). Picosecond detection of BChl-800 as an intermediate electron carrier between selectively-excited P870 and bacteriopheophytin in Rhodospirillum rubrum reaction centres. FEBS Lett. 91, 135139.Google Scholar
Shuvalov, V. A., Ke, B. & Dolan, E. (1979 a). Kinetics and spectral properties of the intermediary electron acceptor aj in photosystem I. Subnanosecond spectroscopy. FEBS Lett. 100, 58.Google Scholar
Shuvalov, V. A., Klevanik, A. V., Sharkov, A. V., Kryukov, P. G. & Ke, B. (1979 b). Picosecond spectroscopy of photosystem I reaction centres. FEBS Lett. 107, 313316.Google Scholar
Shuvalov, V. A., Klimov, V. V., Dolan, E., Parson, W. W. & Ke, B. (1980). Nanosecond fluorescence and absorbance changes in photosystem II at low redox potential. FEBS Lett. 118, 279282.Google Scholar
Shuvalov, V. A., Vasmel, H., Amesz, J. & Duysens, L. N. M. (1986). Picosecond spectroscopy of the charge separation in reaction centres of Chloroflexus aurantiacus with selective excitation of the primary electron donor. Biochim. biophys. Acta 851, 361368.Google Scholar
Shuvalov, V. A., Klevanik, A. V., Ganago, A. O., Shkuropatov, A. Y. & Gubanov, V. S. (1988). Burning of a narrow spectral hole at 1·7K in the absorbance band of the primary electron donor of Rhodopseudomonas viridis reaction centres with blocked electron transfer. FEBS Lett. 237, 5760.Google Scholar
Sin, C. H., Pang, H. M. & Lubman, D. M. (1988). High-pressure fluid injection in supersonic beam mass-spectrometry with resonant two-photon ionization. Anal. lustrum. 17, 87111.Google Scholar
Small, E. W. & Anderson, S. R. (1988). Fluorescence anisotropy decay demonstrates calcium-dependent shape changes in photo-cross-linked calmodulin. Biochemistry 27, 419428.Google Scholar
Smith, S. O., Braiman, M. & Mathies, R. (1983 a). Time-resolved resonance Raman spectroscopy of the K610 and O640 photointermediates of bacteriorhodopsin. In Time-Resolved Vibrat. Spectrosc. (ed. Atkinson, G. H.), pp. 219230. New York: Academic New Press.Google Scholar
Smith, S. O., Pardoen, J. A., Mulder, P. P. J., Curry, B., Lugtenburg, J. & Mathies, R. (1983 b). Chromophore structure in bacteriorhodopsin's O640 photointermediate. Biochemistry 22, 61416148.Google Scholar
Smith, S. O., Lugtenburg, J. & Mathies, R. A. (1985). Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy. J. Membr. Biol. 85, 95109.Google Scholar
Song, P.-S. (1988). The molecular topography of phytochrome: Chromophore and apoprotein. J. Photochem. Photobiol. B 2, 4357.Google Scholar
Song, P.-S., Chae, Q. & Gardner, J. D. (1979). Spectroscopic properties and chromophore conformations of the photomorphogenic receptor: phytochrome. Biochim. biophys. Acta 576, 479495.Google Scholar
Song, P.-S., Tamai, N. & Yamazaki, I. (1986). Viscosity dependence of primary photoprocesses of 124 kDalton phytochrome. Biophys. J. 49, 645649.Google Scholar
Song, P.-S., Singh, B. R., Tamai, N., Yamazaki, T., Yamazaki, I., Tokutomi, S. & Furuya, M. (1988). Primary photoprocesses of phytochrome. Picosecond kinetics of oat and pea phytochromes. Biochemistry (in the Press).Google Scholar
Spalink, J. D., Reynolds, A. H., Rentzepis, P. M., Sperling, W. & Applebury, M. L. (1983). Bathorhodopsin intermediates from 11-cis-rhodopsin and 9-as-rhodopsin. Proc. natn. Acad. Sci. U.S.A. 80, 18871891.Google Scholar
Sparrow, R., Evans, E. H., Brown, R. G. & Shaw, D. (1989). Time-resolved spectroscopy of photosynthetic systems using synchrotron radiation. Part 2. Photosystem 2 preparations from lettuce. J. Photochem. Photobiol. B 3, 6579.Google Scholar
Spudich, J. L. & Bogomolni, R. A. (1983). Spectroscopic discrimination of the three rhodopsinlike pigments in Halobacterium halobium membranes. Biophys. J. 43, 243246.Google Scholar
Stahelin, L. A., Golecki, J. R., Fuller, R. C. & Drews, G. (1978). Visualization of supramolecular architecture of chlorosomes (chlorobium type vesicles) in freezefractured cells of Chloroflexus aurantiacus. Arch. Mikrobiol. 119, 269277.Google Scholar
Stoeckenius, W. & Bogomolni, R. A. (1982). Bacteriorhodopsin and related pigments of halobacteria. A. Rev. Biochem. 51, 587616.Google Scholar
Sundström, V., Rentzepis, P. M., Peters, K. S. & Applebury, M. L. (1977). Kinetics of rhodopsin at room temperature measured by picosecond spectroscopy. Nature 267, 645646.Google Scholar
Sundström, V., Van Grondelle, R., Bercstrom, H., Akesson, E. & Gillbro, T. (1986). Excitation-energy transport in the bacteriochlorophyll antenna systems of Rhodospirillum rubrum and Rhodobacter sphaeroides, studied by low-intensity picosecond absorption spectroscopy. Biochim. biophys. Acta 851, 431446.Google Scholar
Suter, G. W., Mazzola, P., Wendler, J. & Holzwarth, A. R. (1984). Fluorescence decay kinetics in phycobilisomes from the blue-green alga Synechococcus 6301. Biochim. biophys. Acta. 766, 269276.Google Scholar
Switalski, S. C. & Sauer, K. (1984). Energy transfer among the chromophores of Cphycocyanin from Anabaena variabilis using steady state and time-resolved fluorescence spectroscopy. Photochem. Photobiol. 40, 423427.Google Scholar
Szabo, A. (1984). Theory of fluorescence depolarisation in macromolecules and membranes. Biophys. J. 45, A327,–327.Google Scholar
Szabo, A. G., Krajcarski, D., Zuker, M. & Alpert, B. (1984). Conformational heterogeneity in haemoglobin as determined by picosecond fluorescence decay measurements of the tryptophan residues. Chem. Phys. Lett. 108, 145149.Google Scholar
Szabo, A. G. & Rayner, D. M. (1980). The time resolved emission spectra of peptide conformers measured by pulsed laser excitation. Biochem. biophys. Res. Commun. 94, 909915.Google Scholar
Takahashi, Y., Hansson, O., Mathis, P. & Satoh, K. (1987). Primary radical pair in the photosystem II reaction centre. Biochim. biophys. Acta 893, 4959.Google Scholar
Tanaka, F., Kaneda, N., Mataga, N., Tamai, N., Yamazaki, I. & Hayashi, K. (1987). Analyses of nonexponential fluorescence decay functions of a single tryptophan residue in erabutoxin b. J. phys. Chem. 91, 63446346.Google Scholar
Tanaka, F. & Mataga, N. (1982). Dynamic depolarization of interacting fluorophores. Effect of internal rotation and energy transfer. Biophys. J. 39, 129140.Google Scholar
Tanaka, F. & Mataga, N. (1987). Fluorescence quenching dynamics of tryptophan in proteins. Effect of internal rotation under potential barrier. Biophys. J. 51, 487495.Google Scholar
Tavan, P & Schulten, K. (1986). Evidence for a 13, 14-cis cycle in bacteriorhodopsin. Biophys. J. 50, 8189.Google Scholar
Tavan, P., Schulten, K. & Oesterhelt, D. (1985 a). The effect of protonation and electrical interactions on the stereochemistry of retinal schiff bases. Biophys. J. 47, 415430.Google Scholar
Tavan, P., Schulten, K. & Oesterhelt, D. (1985 b). Substituents at the C13 position of retinal and their influence on the function of bacteriorhodopsin. Biophys. J. 47, 349355.Google Scholar
Terner, J., Campion, A. & El-Sayed, M. A. (1977). Time-resolved resonance Raman spectroscopy of bacteriorhodopsin on the millisecond timescale. Proc. natn. Acad. Sci. U.S.A. 74, 7512–5216.Google Scholar
Terner, J., Hsieh, C.-L., Burns, A. R. & El-Sayed, M. A. (1979 a). Time resolved resonance Raman spectroscopy of intermediates of bacteriorhodopsin: the bK590 intermediate. Proc. natn. Acad. Sci. U.S.A. 76, 30463050.Google Scholar
Terner, J., Hsieh, C.-L. & El-Sayed, M. A. (1979 b). Time-resolved resonance Raman characterization of the bl550 intermediate and the two dark-adapted br560 da forms of bacteriorhodopsin. Biophys. J. 26, 527541.Google Scholar
Terner, J., Spiro, T. G., Nagumo, M., Nicol, M. F. & El-Sayed, M. A. (1980). Resonance Raman spectroscopy in the picosecond time scale: the carboxyhaemoglobin photointermediate. J. Am. chem. Soc. 102: 32383239.Google Scholar
Terner, J., Stong, J. D., Spiro, T. G., Nagumo, M., Nicol, M. F. & El-Sayed, M. A. (1981). Picosecond resonance Raman spectroscopic evidence for excited-state spin conversion in carbonmonoxy-hemoglobin photolysis. Proc. natn. Acad. Sci. U.S.A. 78, 13131317.Google Scholar
Thornber, J. P. & Alberte, R. S. (1977). The organization of chlorophyll in vivo. In Encyclopedia of Plant Physiol, vol. 5 (new series) (ed. Trebst, A., and Avron, M.), pp. 574582. Berlin: Springer.Google Scholar
Thummler, F. & Rodiger, W. (1983). Models for the photoreversibility of phytochrome. Z, E isomerization of chromopeptides from phycocyanin and phytochrome. Tetrahedron 39, 19431951.Google Scholar
Thummler, F., Rodiger, W., Cmiel, E. & Schneide, S. (1983). Chromopeptides from phytochrome and phycocyanin. NMR studies of the Pfr and Pr chromophore of phytochrome and E, Z isomeric chromophores of phycocyanin. Z. Naturforsch. C 38, 359368.Google Scholar
Thummler, F., Eilfeld, P., Rodiger, W., Moon, D. K. & Song, P.-S. (1985). On the chemical reactivity of the phytochrome chromophore in the Pr and Pfr form. Z. Naturforsch. C40, 215218.Google Scholar
Tran, C. D. & Beddard, G. S. (1985). Studies of the fluorescence from tryptophan in melittin. Eur. Biophys. 13, 5964.Google Scholar
Trissl, H.-W. (1983). Charge displacements in purple membranes adsorbed to a heptane/water interface. Evidence for a primary charge separation in bacteriorhodopsin. Biochim. biophys. Acta 723, 327331.Google Scholar
Trissl, H.-W. (1985). I. Primary electrogenic processes in bacteriorhodopsin probed by photoelectric measurements with capacitative metal electrodes. Biochim. biophys. Acta 806, 124135.Google Scholar
Trissl, H.-W. & Gärtner, W. (1987). Rapid charge separation and bathochromic absorption shift of flash-excited bacteriorhodopsin containing 13 cis or all-trans forms of substituted retinals. Biochemistry 26, 751758.Google Scholar
Trissl, H.-W., Breton, J., Deprez, J. & Leibl, W. (1987 a). Primary electrogenic reactions of photosystem II as probed by the light-gradient method. Biochim. biophys. Acta 893, 305319.Google Scholar
Trissl, H.-W., Leibl, W., Deprez, J., Dobek, A. & Breton, J. (1987 b). Trapping and annihilation in the antenna system of photosystem I. Biochim. biophys. Acta 893, 320332.Google Scholar
Valeur, B. & Weber, G. (1977). Resolution of the fluorescence excitation spectrum of indole into the iLa and iLb excitation bands. Photochem. Photobiol. 25, 441444.Google Scholar
Van Gorkom, H. J. (1985). Electron transfer in photosystem II. Photosyn. Res. 6, 97112.Google Scholar
Van Grondelle, R. & Amesz, J. (1986). Excitation energy transfer in photosynthetic systems. In Light Emission by Plants and Bacteria (ed. Govindjee, J. Amesz, and Fork, D. C.), pp. 191224. New York: Academic Press.Google Scholar
Van Grondelle, R., Bergstrom, H., Sundström, V. & Gillbro, T. (1987). Energy transfer within the bacteriochlorophyll antenna of purple bacteria at 77 K, studied by picosecond absorption recovery. Biochim. biophys. Acta 894, 313326.Google Scholar
Van Grondelle, R., Hunter, C. N., Barker, J. G. C. & Kramer, H. J. M. (1983). Size and structure of antenna complexes of photosynthetic bacteria as studied by singlet–singlet quenching of the bacteriochlorophyll fluorescence yield. Biochim. biophys. Acta 723, 3036.Google Scholar
Vierstra, R. D. & Quail, P. H. (1983). Purification and initial characterization of 124 kDalton phytochrome from Avena. Biochemistry 22, 24982505.Google Scholar
Vierstra, R. D. & Quail, P. H. (1986). The protein in Photomorphogenesis in Plants (ed. Kendrick, R. E., and Kronenberg, G. H. M.), pp. 3560. Dordrecht: Martinus Nijhoff.Google Scholar
Vincent, M., Brochon, J.-C, Merola, F., Jordi, W. & Gallay, J. (1988). Nanosecond dynamics of horse heart apocytochrome c in aqueous solution as studied by timeresolved fluorescence of the single tryptophan residue (Trp-59). Biochemistry 27, 87528761.Google Scholar
Vogel, H., Nilsson, L., Rigler, R., Voges, K.-P. & Jung, G. (1988). Structural fluctuations of a helical, polypeptide transversing a lipid bilayer. Proc. natn. Acad. Sci. U.S.A. 85, 50675071.Google Scholar
Vos, M., Nuijs, A. M., Van Grondelle, R., Van Dorssen, P. J., Gerola, P. D. & Amesz, J. (1987). Excitation transfer in chlorosomes of green photosynthetic bacteria. Biochim. biophys. Acta 891, 275285.Google Scholar
Wagner, G. & Wüthrich, K. (1978). Dynamic model of globular protein conformations based on NMR studies in solution. Nature 275, 247248.Google Scholar
Wald, G. (1968 a). The molecular basis of visual excitation. Nature 219, 800807.Google Scholar
Wald, G. (19686). Molecular basis of visual excitation. Science 162, 230239.Google Scholar
Warshel, A. (1976). Bicycle-pedal model for the first step in the vision process. Nature 260, 679683.Google Scholar
Warshel, A. (1978). Charge stabilization mechanism in the visual and purple membrane pigments. Proc. natn. Acad. Sci. U.S.A. 75, 25582562.Google Scholar
Warhsel, A. (1979). Conversion of light energy to electrostatic energy in the proton pump of Halobacterium halobium. Photochem. Photobiol. 30, 285290.Google Scholar
Warshel, A. & Barboy, N. (1982). Energy storage and reaction pathways in the first step of the vision process. J. Am. Chem. Soc. 104, 14691476.Google Scholar
Wasielewski, M. R. & Tiede, D. M. (1986). Subpicosecond measurements of primary electron transfer in Rhodopseudomonas viridis reaction centres using near-infrared excitation. FEBS Lett. 204, 368372.Google Scholar
Wasielewski, M. R., Tiede, D. M. & Frank, H. A. (1986). Ultrafast electron and energy transfer in reaction centre and antenna proteins from photosynthetic bacteria. In Ultrafast Phenomena, vol. v (ed. Fleming, G. R. and Siegman, A. E.), Springer Series in Chemical Physics, No. 46, pp. 388392. Berlin: Springer.Google Scholar
Wasielewski, M. R., Fenton, J. M. & Govindjee, (1987). The rate of formation of P700+–A0 in photosystem I particles from spinach as measured by picosecond transient absorption spectroscopy. Photosyn. Res. 12, 181190.Google Scholar
Weaver, A. J., Kempel, M. D. & Prendergast, F. G. (1988). Tryptophan sidechain dynamics in hydrophobic oligopeptides determined by use of C-13 nuclear magnetic resonance spectroscopy. Biophys. J. 54, 115.Google Scholar
Weber, G. & Teale, F. J. W. (1960). Electronic energy transfer in haem proteins. Discussions of the Faraday Society, 27, Energy transfer with special reference to biological systems. 134141.Google Scholar
Wehrmeyer, W. (1983). Organization and composition of cyanobacterial and rhodophycean phycobilisomes. In Photosynthetic Prokaryotes (ed. Papageorgiou, G. C. and Packer, L.), pp. 122. Amsterdam: Elsevier.Google Scholar
Weinryb, I. & Steiner, R. F. (1971). The luminescence of the aromatic amino acids. In Excited States of Proteins and Nucleic Acids (ed. Steiner, R. F., and Weinryb, I.), pp. 277318. New York: Plenum Press.Google Scholar
Wendler, J. & Holzwarth, A. R. (1987). State transitions in the green alga Scenedesmus obliquus probed by time-resolved chlorophyll fluorescence spectroscopy and global data analysis. Biophys. J. 52, 717728.Google Scholar
Wendler, J., Holzwarth, A. R., Braslavsky, S. E. & Schaffner, K. (1984 a). Wavelength-resolved fluorescence decay and fluorescence quantum yield of large phytochrome from oat shoots. Biochim. biophys. Acta 786, 213221.Google Scholar
Wendler, J., Holzwarth, A. R. & Wehrmeyer, W. (1984 b). Picosecond time-resolved energy transfer in phycobilisomes isolated from the red alga Porphyridium cruentum. Biochim. biophys. Acta 765, 5867.Google Scholar
Wendler, J., John, W., Scheer, H. & Holzwarth, A. R. (1986). Energy transfer kinetics in trimeric C-phycocyanin studied by picosecond fluorescence kinetics. Photochem. Photobiol. 44, 7985.Google Scholar
Wildman, R. B. & Bowen, C. C. (1974). Phycobilisomes in blue-green algae J. Bacterial. 117, 866881.Google Scholar
Williams, R. J. P. (1977 a). Flexible drug molecules and dynamic receptors. Angew. Chem. 89, 805816.Google Scholar
Williams, W. P. (1977 b). The two photosystems and their interactions. In Primary Processes of Photosynthesis (ed. Barber, J.), vol. 2: Topics Photosynthesis, 99147. Amsterdam: Elsevier.Google Scholar
Wittmershaus, B. P. (1987). Measurements and kinetic modelling of picosecond timeresolved fluorescence from photosystem I and chloroplasts. In Progress in Photosynthesis Research, vol. 1 (ed. Biggins, J.), pp. 7582. Dordrecht: Nijhoff.Google Scholar
Wittmershaus, B., Nordlund, T. M., Knox, W. H., Knox, R. S., Geacintov, N. E. & Breton, J. (1985). Picosecond studies at 77K of energy transfer in chloroplasts at low and high excitation intensities. Biochim. biophys. Acta 806, 93106.Google Scholar
Wittmershaus, B. P., Berns, D. S. & Huang, C. (1987). Picosecond time-resolved fluorescence from detergent-free photosystem I particles. Biophys. J. 52, 829836.Google Scholar
Woodbury, N. W., Becker, M., Middendorf, D. & Parson, W. W. (1985). Picosecond kinetics of the initial photochemical electron-transfer reaction in bacterial photosynthetic reaction centres. Biochemistry 24, 75167521.Google Scholar
Wüthrich, K. (1976). In NMR in Biological Research: Peptides and Proteins, pp. 1379. Amsterdam: Elsevier.Google Scholar
Wüthrich, K. (1986). In NMR of Proteins and Nucleic acids. New York: Wiley.Google Scholar
Yagi, K., Tanaka, F., Nakashima, N. & Yoshihara, K. (1983). Picosecond laser fluorometry of fad of d-amino-acid oxidase benzoate complex. J. biol. Chem. 258, 37993802.Google Scholar
Yamazaki, I., Mimuro, M., Murao, T., Yamazaki, T., Yoshihara, K. & Fujita, Y. (1984). Excitation energy transfer in the light-harvesting antenna system of the red alga Porphyridium cruentum and the blue-green alga Anacystis nidulans: analysis of time-resolved fluorescence spectra. Photochem. Photobiol. 39, 233240.Google Scholar
Yang, C. L., Evesque, P. & El-Sayed, M. A. (1986). Effect of variation in the microenvironment of the fractal structure on the donor decay curve resulting from a one-step dipolar energy-transfer process. J. Phys. Chem. 90, 12841288.Google Scholar
Yoshizawa, T. & Shichida, Y. (1985). Picosecond laser analysis of rhodopsin. In Biomolecules (ed. Nagata, C.), pp. 111126. Amsterdam: Elsevier.Google Scholar
Yoshizawa, T. & Wald, G. (1963). Pre-lumirhodopsin and the bleaching of visual pigments. Nature 197, 12791286.Google Scholar
Zinth, W., Dobler, J. & Kaiser, W. (1986). Femtosecond spectroscopy of the primary events of bacterial photosynthesis. In Ultrafast Phenomena, vol. v (ed. Fleming, G. R. and Siegman, A. E.), Springer Series in Chemical Physics, No. 46, pp. 379383. Berlin: Springer.Google Scholar
Zinth, W., Dobler, J., Dressler, K. & Kaiser, W. (1988). Femtosecond excited-state reaction dynamics of retinal-containing photosystems. In Ultrafast Phenomena, vol. VI (ed. Yajima, T., Yoshihara, K., Harris, C. B., and Shionoya, S.), pp. 581583. Berlin: Springer.Google Scholar
Zinth, W., Knapp, E. W., Fischer, S. F., Kaiser, W., Deisenhofer, J. & Michel, H. (1985 a). Correlation of structural and spectroscopic properties of a photosynthetic reaction centre. Chem. Phys. Lett. 119: 14.Google Scholar
Zinth, W., Nuss, M. C., Franz, M. A., Kaiser, W. & Michel, H. (1985 b). Femtosecond studies of the reaction center of Rhodopseudomonas viridis: the very first dynamics of the electron-transfer processes. In Antennas and Reaction Centers of Photosynthetic Bacteria (ed. Michel-Beyerle, M E.), pp. 286291. Berlin: Springer.Google Scholar
Zuber, H. (1985). Structure and function of light-harvesting complexes and their polypeptides. Photochem. Photobiol. 42, 821844.Google Scholar
Zuber, H. (1986). Structure of light-harvesting antenna complexes of photosynthetic bacteria, cyanobacteria and red algae. Trends in Biochem. 11, 414419.Google Scholar