Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T17:03:46.910Z Has data issue: false hasContentIssue false

Thermodynamics and membrane processes

Published online by Cambridge University Press:  17 March 2009

Roger A. Klein
Affiliation:
The Molteno Institute, University of Cambridge, England

Extract

This review represents a personal view of membrane thermodynamics. I do not intend to deal at all with the irreversible thermodynamics of membrane mass transfer processes. This aspect has been covered far more competently and completely by other people (Bittar, 1970; Paterson, 1970; Rottenberg, Caplan & Essig, 1970; Mitchell, 1970; Rothschild et al. 1980; Oster, Perelson & Katchalsky, 1973; Kedem & Katchalsky, 1958; Schwartz, 1971). The recent review on osmosis by Hill (1979) is a particularly succinct appraisal of a facet of irreversible membrane thermodynamics. Arata & Nishimura (1980) have considered the coupling of electron transfer to vectorial processes in biological membranes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adam, N. K. (1941). The Physics and Chemistry of Surfaces, 3rd edn.Oxford University Press.Google Scholar
Adamson, A. W. (1979). A Textbook of Physical Chemistry, 2nd edn.New York and London: Academic Press.Google Scholar
Akutsu, H., Ikematsu, M. & Kyogoku, Y. (1981). Molecular structure and interaction of dipalmitoyl phosphatidylcholine in multilayers. Comparative study with phosphatidylethanolamine. Chem. Phys. Lipids 28, 149158.CrossRefGoogle Scholar
Albert, A. (1981). Selective Toxicity; The Physico-Chemical Basis of Therapy, 6th edn.London and New York: Chapman & Hall.CrossRefGoogle Scholar
Anscombe, F. J. (1960). Rejection of outliers. Technometrics 2, 123147.CrossRefGoogle Scholar
Arata, H. & Nishimura, M. (1980). Thermodynamics of electron transfer and its coupling to vectorial processes in biological membranes. Biophys. J. 32, 791806.CrossRefGoogle ScholarPubMed
Arrhenius, S. A. (1889). Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. phys. Chem. IV, 226248.CrossRefGoogle Scholar
Arrhenius, S. A. (1907). Immunochemistry. New York: Macmillan.Google Scholar
Arrhenius, S. A.Quantitative Laws in Biological Chemistry. London: G. Bell.Google Scholar
Aston, J. G. & Fritz, J. J. (1959). Thermodynamics and Statistical Thermodynamics. New York: John Wiley.Google Scholar
Azzi, A. (1975). The application of fluorescent probes in membrane studies. Q. Rev. Biophys. 8, 237316.CrossRefGoogle ScholarPubMed
Bagnall, D. L. & Wolfe, J. A. (1978). Chilling sensitivity in plants: Do the activation energies of growth processes show an abrupt change at a critical temperature? J. exp. Bot. 29, 12311242.CrossRefGoogle Scholar
Baldwin, J. (1975). Selection for catalytic efficiency of lactate dehydrogenase M4: correlation with body temperature and levels of anaerobic glycolysis. Comp. Biochem. Physiol. 52B, 3337.Google Scholar
Baldwin, J. & Hochachka, P. W. (1970). Functional significance of isoenzymes in thermal acclimatization. Acetylcholinesterase from trout brain. Biochem. J. 116, 883887.CrossRefGoogle ScholarPubMed
Baldwin, J., Storey, K. B. & Hochachka, P. W. (1975). Lactate dehydrogenase M4 of an abyssal fish: strategies for function at low temperature and high pressure. Comp. Biochem. Physiol. 52B, 1923.Google Scholar
Bangham, A. D., Standish, M. M. & Watkins, J. C. (1965). Diffusion of univalent ions across the lamellae of swollen phospholipids. J. molec. Biol. 13, 238252.CrossRefGoogle ScholarPubMed
Behrisch, H. W. & Hochachka, P. W. (1969 a). Temperature and the regulation of enzyme activity in poikilotherms - properties of Rainbow trout fructose diphosphatase. Biochem. J. III, 287295.CrossRefGoogle Scholar
Behrisch, H. W. & Hochachka, P. W. (1969 b). Temperature and the regulation of enzyme activity in poikilotherms: properties of lungfish fructose diphosphatase. Biochem. J. 112, 601607.CrossRefGoogle ScholarPubMed
Ben-Naim, A. (1968). Solubility and thermodynamics of solution of argon in the water-ethylene glycol system. J. phys. Chem. 72, 29983001.CrossRefGoogle Scholar
Ben-Naim, A. (1972). Thermodynamics of dilute aqueous solutions of non-polar solutes. In Water and Aqueous Solutions: Structure, Thermodynamics and Transport processes, ch. II (ed. Horne, R. A.), pp. 425464. New York: Wiley-Interscience.Google Scholar
Berde, C. B., Andersen, H. C. & Hudson, B. S. (1980). A theory of the effects of head-group structure and chain unsaturation on the chain melting transition of phospholipid dispersions. Biochemistry, Philad. 19, 42794293.CrossRefGoogle ScholarPubMed
Bigelow, C. C. & Channon, M. (1976). Proteins. In Handbook of Biochemistry and Molecular Biology, vol. 1, 3rd ed. (ed. Fasman, G. D.), p. 209. Cleveland, Ohio: CRC Press.Google Scholar
Bittar, E. E. (1970) (editor). Membranes and Ion Transport. New York: John Wiley.Google Scholar
Blackman, F. F. (1905). Optima and limiting factors. Ann. Bot. 19, 281295.CrossRefGoogle Scholar
Boheim, G., Hanke, W. & Eibl, H. (1980). Lipid phase transition in planar bilayer membranes and its effect on carrier-and pore-mediated ion transport. Proc. natn. Acad. Sci. U.S.A. 77, 34033407.CrossRefGoogle ScholarPubMed
Brasitus, T. A. & Schachter, D. (1980). Lipid dynamics and lipid-protein interactions in rat enterocyte basolateral and microvillus membranes. Biochemistry, Philad. 19, 27632769.CrossRefGoogle ScholarPubMed
Brasitus, T. A., Tall, A. R. & Schachter, D. (1980). Thermo-tropic transitions in rat intestinal plasma membranes studied by differential scanning calorimetry and fluorescence polarization. Biochemistry, Philad. 19, 12561261.CrossRefGoogle Scholar
Briggs, G. E. & Haldane, J. B. S. (1925). A note on the kinetics of enzyme action. Biochem. J. 19, 338339.CrossRefGoogle ScholarPubMed
Burchfield, H. P. & Storrs, E. E. (1962). Biochemical Applications of Gas Chromatography. New York and London: Academic Press.Google Scholar
Bürkli, A. & Cherry, R. J. (1981). Rotational motion and flexibility of Ca2+, Mg2+ dependent adenosine 5′-triphosphatase in sarcoplasmic reticulum membranes. Biochemistry, Philad. 20, 138145.CrossRefGoogle ScholarPubMed
Bush, S. F., Adams, R. G. & Levin, I. W. (1980). Structural reorganizations in lipid bilayer systems: effects of hydration and sterol addition on Raman spectra of dipalmitoyl-phosphatidylcholine multilayers. Biochemistry, Philad. 19, 44294436.CrossRefGoogle Scholar
Cable, M. B. & Powell, G. L. (1980). Spin-labeled cardiolipin: preferential segregation in the boundary layer of cytochrome c oxidase. Biochemistry, Philad. 19, 56795686.CrossRefGoogle ScholarPubMed
Callaghan, P. T. & Jolley, K. W. (1979). Molecular conformational changes in the triglyceride and methyl ester of stearic acid as studied by temperature dependent carbon-13 chemical shifts. Chem. Phys. Lipids 23, 133142.CrossRefGoogle Scholar
Cameron, D. G., Casal, H. L. & Mantsch, H. H. (1980). Characterization of the pretransition in 1,2-dipalmitoyl-sn-glycero-3-phosphoryl-choline by Fourier transform infrared spectroscopy. Biochemistry, Philad. 19, 36653672.CrossRefGoogle Scholar
Capaldi, R. A. (1974). A dynamic model of cell membranes. Scient. Am. 230, 2633.CrossRefGoogle ScholarPubMed
Casal, H. L., Cameron, D. G., Smith, I. C. P. & Mantsch, H. M. (1980). Acholeplasma laidlawii membranes: a Fourier transform infrared study of the influence of protein on lipid organization and dynamics. Biochemistry, Philad. 19 444451.CrossRefGoogle ScholarPubMed
Ceuterick, F., Peeters, J., Heremans, K., De, Smedt H. & Olbrechts, H. (1976). Involvement of lipids in the break of the Arrhenius plot of Azotobacter nitrogenase. Archs. in Physiol. Biochim. 84, 587588.Google ScholarPubMed
Ceuterick, F., Peeters, J., Heremans, K., De, Smedt H. & Olbrechts, H. (1978). Effect of high pressure, detergents and phospholipase on the break in the Arrhenius plot of Azotobacter vinelandii nitrogenase. Eur. J. Biochem. 87, 401408.CrossRefGoogle Scholar
Chapman, D. (1975). Phase transitions and fluidity characteristics of lipid and cell membranes. Q. Rev. Biophys. 8, 185235.CrossRefGoogle ScholarPubMed
Chen, S. C., Sturtevant, J. M. & Gaffney, B. J. (1980). Scanning calorimetric evidence for a third phase transition in phosphatidylcholine bilayers. Proc. natn. Acad. Sci. U.S.A. 77, 50605063.CrossRefGoogle ScholarPubMed
Chu, B. (1982). Correlation function profile analysis in laser light scattering. In The Application of Laser Light Scattering to the Study of Biological Motion (ed. Earnshaw, J. C. and Steer, M. W.), N.A.T.O. Advanced Study Institute, Maratea, Italy, 20 06 to 3 07.Google Scholar
Cohen, B. E. & Bangham, A. D. (1972). Diffusion of small non-electrolytes across liposome membranes. Nature, Lond. 236, 173174.CrossRefGoogle ScholarPubMed
Cook, S. L., Bouma, S. R. & Huestis, W. H. (1980). Cell to vesicle transfer of intrinsic membrane proteins: effect of membrane fluidity. Biochemistry, Philad. 19, 46014607.CrossRefGoogle ScholarPubMed
Cornell, B. A., Chapman, D. & Peel, W. E. (1979). Random close packed arrays of membrane components. Chem. Phys. Lipids 23, 223237.CrossRefGoogle Scholar
Cornish-Bowden, A. & Eisenthal, R. (1974). Statistical considerations in the estimation of enzyme kinetic parameters by the direct linear plot and other methods. Biochem. J. 139, 721730.CrossRefGoogle Scholar
Crozier, W. J. (1926). The distribution of temperature characteristics for biological processes; critical increments for heart rates. J. gen. Physiol. 9, 531546.CrossRefGoogle ScholarPubMed
Dahlquist, G. & Björck, Å. (1974). Numerical Methods, trans. Anderson, N.. New Jersey: Prentice-Hall.Google Scholar
Danielli, J. F. (1958). Surface chemistry and cell membranes. In Surface Phenomena in Chemistry and Biology (ed. Danielli, J. F., Pankhurst, K. G. A. and Riddiford, A. C.), pp. 246265. London and New York: Pergamon Press.Google Scholar
Davies, J. T. && Rideal, E. K. (1961). Interfacial Phenomena, p. 235. New York and London: Academic Press.Google Scholar
Davis, S. S. (1973 a). Determination of the thermodynamics of the methyl group in solutions of drug molecules. J. Pharm. Pharmac. 25, 112.CrossRefGoogle ScholarPubMed
Davis, S. S. (1973 b). Use of substituent constants in structure-activity relations and the importance of the choice of standard state. J. Pharm. Pharmac. 25, 293296.CrossRefGoogle ScholarPubMed
Davis, S. S. (1973 c). Determination of thermodynamics of halogen groups in solutions of drug molecules. J. Pharm. Pharmac. 25, 769778.CrossRefGoogle ScholarPubMed
Davis, S. S. (1973 d). Determination of the thermodynamics of hydroxyl and carboxyl groups in solutions of drug molecules. J. Pharm. Pharmac. 25, 982992.CrossRefGoogle ScholarPubMed
Davis, S. S., Higuchi, T. & Rytting, J. H. (1972). Determination of thermodynamics of the methylene group in solutions of drugmolecules. J. Pharm. Pharmac. 24, 30P46P.Google Scholar
Davson, H. & Danielli, J. F. (1952). The Permeability of Natural Membranes, 2nd ed.London and Cambridge: Cambridge University Press.Google Scholar
Degani, H., Danon, A. & Caplan, S. R. (1980). Proton and carbon-13 nuclear magnetic resonance studies of the polar lipids of Halobacterium halobium. Biochemistry, Philad. 19, 16261631.CrossRefGoogle ScholarPubMed
Derzko, Z. & Jacobson, K. (1980). Comparative lateral diffusion of fluorescent lipid analogues in phospholipid multi-bilayers. Biochemistry, Philad. 19, 60506057.CrossRefGoogle Scholar
De, Smedt H., Borghgraef, R., Ceuterick, F. & Heremans, K. (1978). Pressure effects on lipid-protein interactions in sodium potassium ATPase EC–3.6.1.3. from pig kidney. Z. phys. chem. 359, 1467.Google Scholar
De, Smedt H., Borghgraef, R., Ceuterick, F. & Heremans, K. (1979). Pressure effects on lipid-protein interactions in sodium potassium ATPase. Biochim. biophys. Acta 556, 479489.Google Scholar
De, Verteuil F., Pink, D. A., Vadas, E. F. & Zuckerman, M. J. (1981). Phase diagrams for impure lipid systems. Application to lipid/anaesthetic mixtures. Biochim. biophys. Acta 640, 207222.Google Scholar
Diamond, J. M. & Katz, Y. (1974). Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J. Membrane Biol. 17, 121154.CrossRefGoogle ScholarPubMed
Diamond, J. M. & Wright, E. M. (1969). Biological membranes: the physical basis of ion and nonelectrolyte selectivity. A. Rev. Physiol. 31, 581646.CrossRefGoogle ScholarPubMed
Dickens, B. F. & Thompson, G. A. (1980). Effects of growth at different temperatures on the physical state of lipids in native microsomal membranes from Tetrahymena. Biochemistry, Philad. 19, 50295037.CrossRefGoogle ScholarPubMed
Dickerson, R. E. (1969). Molecular Thermodynamics. New York and Amsterdam: W. A. Benjamin.Google Scholar
Dill, K. A. & Flory, P. J. (1980). Interphases of chain molecules: monolayers and lipid bilayer membranes. Proc. natn. Acad. Sci. U.S.A. 77, 31153119.CrossRefGoogle ScholarPubMed
Dixon, M. & Webb, E. C. (1964). Enzymes, 2nd ed.London: Longmans, Green.Google Scholar
Doody, M. C., Pownall, H. J., Kao, Y. J. & Smith, L. C. (1980). Mechanism and kinetics of transfer of a fluorescent fatty acid between single-walled phosphatidylcholine vesicles. Biochemistry, Philad. 19 108116.CrossRefGoogle ScholarPubMed
Dorn, W. S. & McCracken, D. D. (1972). Numerical Methods with Fortran IV Case Studies. New York and London: John Wiley.Google Scholar
Dreizen, P. & Kim, H. D. (1972). Contractile proteins of a benthic fish. I. Effects of temperature and pressure on myosin ATPase. Am. Zool. 11, 513521.CrossRefGoogle Scholar
Edmonds, D. T. (1979). A reversible electrostatic channel for ion transport. Chem. Phys. Letters 65, 429–433.Google Scholar
Edmonds, D. T. (1980 a). Membrane ion channels and ionic hydration energies. Proc. R. Soc. Lond. B 211, 5162.Google ScholarPubMed
Edmonds, D. T. (1980 b). Aqueous ion channels. Biochem. Soc. Symp. 46, 91101Google Scholar
Edmonds, D. T. (1981). A calculation of the current voltage characteristic of a voltage-controlled model membrane ion channel. Proc. R. Soc. Lond. B 214, 125136.Google ScholarPubMed
Eisenthal, R. & Cornish-Bowden, A. (1974). The direct linear plot: a new graphical procedure for estimating enzyme kinetic parameters. Biochem. J. 139, 715720.CrossRefGoogle ScholarPubMed
Ellory, J. C. & Lew, V. L. (1977). Membrane Transport in Red Cells, pp. 304307. New York and London: Academic Press.Google Scholar
Ellory, J. C., Simonsen, E. & Klein, R. A. (1979). Inhibition of the sodium pump in human red cells by tetra alkyl ammonium derivatives. In The Sodium Pump (ed. Jorgensen, P. L.), New York and London: Academic Press.Google ScholarPubMed
Emch, G. G. (1972). In Phase Transitions and Critical Phenomena (ed. Domb, C. and Green, M. S.): New York and London: Academic Press.Google Scholar
Epand, R. M. & Epand, R. F. (1980). Studies of thermotropic phospholipid phase transitions using scanning densitometry. Chem. Phys. Lipids 27, 139150.CrossRefGoogle Scholar
Exner, O. (1972). The Hammett equation-the present position. In Advances in Linear Free Energy Relationships (ed. Chapman, N. B and Shorter, J.), pp. 169. New York and London: Plenum Press.Google Scholar
Fast, J. D. (1970). Entropy. The Significance of the Concept of Entropy and its Applications in Science and Technology, 2nd edn.London: Macmillan.Google Scholar
Fenner, R. T. (1974). Computing for Engineers. London and Basingstoke: Macmillan.CrossRefGoogle Scholar
Fisher, T. H. & Levy, G. C. (1981). Electron and proton magnetic resonance studies on the effect of rhodopsin incorporation on molecular motion in dimyristoyl phosphatidyicholine bilayers. Chem. Phys. Lipids 28, 723.CrossRefGoogle Scholar
Fisher, H. F., Colen, A. H. & Medary, R. T. (1981). Temperature- dependent δC°p generated by a shift in equilibrium between macrostates of an enzyme. Nature, Lond. 292, 271272.CrossRefGoogle Scholar
Flory, P. J. (1969). Statistical Mechanics of Chain Molecules. New York and London: John Wiley.CrossRefGoogle Scholar
Forrest, B. J. & Reeves, L. W. (1979). Studies in membrane processes X: a deuterium magnetic resonance study of dipalmitoyl lecithin and palmitic acid guests in magnetically-oriented hexadecyl-trimethyl-ammonium bromide liquid crystalline system. Chem. Phys. Lipids 24, 183192.CrossRefGoogle Scholar
Franks, F. (1973). The solvent properties of water. In Water, vol. 2, ch. I, (ed. Franks, F.), pp. 154. New York and London: Plenum Press.Google Scholar
Franks, F. (1975). The hydrophobic interaction. In Water, vol. 4, ch. I, (ed. Franks, F.), pp. 194. New York and London: Plenum.Google Scholar
Freire, E. & Biltonen, R. (1978). Estimation of molecular averages and equilibrium fluctuations in lipid bilayer systems from the excess heat capacity function. Biochem. biophys. Acta 514, 5468.CrossRefGoogle ScholarPubMed
Freire, E. & Synder, B. (1980). Estimation of the lateral distribution of molecules in two component lipid bilayers. Biochemistry, Philad. 19, 8894.CrossRefGoogle ScholarPubMed
Frost, A. A. & Pearson, R. G. (1961). Kinetics and Mechanism. A Study of Homogeneous Chemical Reactions. New York and London: John Wiley.CrossRefGoogle Scholar
Gary-Bobo, C. M., Dipolo, R. & Solomon, A. K. (1969). Role of hydrogen-bonding in non-electrolyte diffusion through dense artificial membranes. J. gen. Physiol. 54, 369382.CrossRefGoogle Scholar
Gerald, C. F. (1978). Applied Numerical Analysis. Massachusetts, California, London: Addison-Wesley.Google Scholar
Giese, B. (1977). Basis and limitations of the reactivity-selectivity principle. Angew. Chem. 16, 125136.CrossRefGoogle Scholar
Gill, S. J. & Wadsö, I. (1976). An equation of state describing hydrophobic interactions. Proc. natn. Acad. Sci. U.S.A. 73, 29552958.CrossRefGoogle ScholarPubMed
Glasstone, S. (1960). Textbook of Physical Chemistry, 2nd ed. pp. 401, 1211. London: Macmillan.Google Scholar
Glasstone, S., Laidler, K. J. & Eyring, H. (1941). The Theory of Rate Processes. New York and London: McGraw-Hill.Google Scholar
Goldstein, D. A. & Solomon, A. K. (1960). Determination of equivalent pore radius for human red cells by osmotic pressure measurement. J. gen. Physiol. 44, 117.CrossRefGoogle ScholarPubMed
Greaney, G. S. & Somero, G. N. (1979). Effects of anions on the activation thermodynamics and fluorescence emission spectrum of alkaline phosphatase EC –3.1.3.1. Evidence for enzyme hydration changes during catalysis. Biochemistry, Philad. 18, 53225332.CrossRefGoogle ScholarPubMed
Greaney, G. S. & Somero, G. N. (1980). Contributions of binding and catalytic rate constants to evolutionary modifications in Michaelis constant of NADH for muscle type M4 lactate dehydrogenases. J. comp. Physiol. B 137, 115122.CrossRefGoogle Scholar
Green, D. E., Fry, M. & Blondin, G. A. (1980). Phospholipids as the molecular instruments of ion and solute transport in biological membranes. Proc. natn. Acad. Sci. U.S.A. 77, 257261.CrossRefGoogle ScholarPubMed
Griffiths, R. B. (1972). In Phase Transitions & Critical Phenomena (ed. Domb, C. and Green, M. S.). New York and London: Academic Press.Google Scholar
Gruen, D. W. R. (1980). A statistical mechanical model of the lipid bilayer above its phase transition. Biochim. biophys. Acta 595, 161183.CrossRefGoogle ScholarPubMed
Gruen, D. W. R. (1981). A mean-field model of the alkane-saturated lipid bilayer above its phase transition. I. Development of the model. Biophys. J. 33, 149166.CrossRefGoogle ScholarPubMed
Gruen, D. W. R. & Haydon, D. A. (1981). A mean-field model of the alkane-saturated lipid bilayer above its phase transition. II. Results and comparison with experiment. Biophys. J. 33, 167188.CrossRefGoogle ScholarPubMed
Guggenheim, E. A.Introduction to Statistical Mechanics (ed. Rushbrooke, G. S.). Oxford University Press. A book review. Trans Faraday Soc. 45, 894.Google Scholar
Gunst, R. F. & Mason, R. L. (1980). Regression Analysis and Its Application. New York and Basel: Marcel Dekker.Google Scholar
Halicioglu, T. & Sinanoglu, O. (1969). Solvent effects on cis-trans azobenzene isomerization: a detailed application of a theory of solvent effects on molecular association. Ann. N.Y. Acad. Sci. 158, 308317.CrossRefGoogle Scholar
Hall, A. C., Ellory, J. C. & Klein, R. A. (1982). Pressure and temperature effects on human red cell cation transport. J. Membrane Biol. 68, 4756.CrossRefGoogle ScholarPubMed
Hammett, L. P. (1970). Physical Organic Chemistry: Reaction Rates, Equilibria, and Mechanisms, 2nd ed. pp. 109112. New York: McGraw-Hill.Google Scholar
Hansch, C. (1968). The use of homolytic, steric, and hydrophobic constants in a structure-activity study of 1,3-benzodioxole synergists. J. Med. Chem. 11, 920924.CrossRefGoogle Scholar
Hansch, C. & Fujita, T. (1964). ρ-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J. Am. chem. Soc. 86, 16161626.CrossRefGoogle Scholar
Hansch, C., Maloney, P. P., Fujita, T. & Muir, R. M. (1962). Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature, Lond. 194, 178180.CrossRefGoogle Scholar
Hansch, C., Muir, R. M., Fujita, T., Maloney, P. P., Geiger, F. & Streich, M. (1963). The correlation of biological activity of plant growth regulators and chloromycetin derivatives with Hammett constants and partition coefficients. J. Am. chem. Soc. 85, 28172824.CrossRefGoogle Scholar
Harris, M. J., Higuchi, T. & Rytting, J. H. (1973). Thermo-dynamic group contributions from ion pair extraction equilibria for use in the prediction of partition coefficients. Correlation of surface area with group contributions. J. Phys. Chem. 77, 26944703.CrossRefGoogle Scholar
Hermann, R. B. (1972). Theory of hydrophobic bonding. II. The correlation of hydrocarbon solubility in water with solvent cavity area. J. Phys. Chem. 76, 27542759.CrossRefGoogle Scholar
Hermann, R. B. (1977). Use of solvent cavity area and number of packed solvent molecules around a solute in regard to hydrocarbon solubilities and hydrophobic interactions. Proc. natn. Acad. Sci. U.S.A. 74, 41444145.CrossRefGoogle ScholarPubMed
Hesketh, T. R., Smith, G. A., Housay, M. D., McGill, K. A., Birdsall, N. J. M., Metcalfe, J. C. & Warren, G. B. (1976). Annular lipids determine the ATPase activity of a calcium transport protein complexed with dipalmitoyllecithin. Biochemistry, Philad. 15, 41454151.CrossRefGoogle ScholarPubMed
Hildebrand, J. H. (1968). A criticism of the term ‘Hydrophobic Bond’. J. Phys. Chem. 72, 18411842.CrossRefGoogle Scholar
Hildebrand, J. H. (1969 a). Relative diffusivities of methane in water and carbon tetrachloride. Proc. natn. Acad. Sci. U.S.A. 64, 13291330.CrossRefGoogle ScholarPubMed
Hildebrand, J. H. (1969 b). Thermodynamic parameters for dissolved gases. Proc. natn. Acad. Sci. U.S.A. 64, 13311334.CrossRefGoogle ScholarPubMed
Hildebrand, J. H. (1979). Is there a ‘hydrophobic effect’? Proc. natn. Acad. Sci. U.S.A. 76, 194.CrossRefGoogle Scholar
Hill, A. E. (1979). Osmosis. Q. Rev. Biophys. 12, 6799.CrossRefGoogle ScholarPubMed
Hill, M. W. (1974). The effect of anaesthetic-like molecules on the phase transition in smectic mesophases of dipalmitoyllecithin. I. The normal alcohols up to C = 9 and three inhalation anaesthetics. Biochim. biophys. Acta 356, 117124.CrossRefGoogle Scholar
Hill, M. W. (1975). Partition coefficients of some anaesthetic-like molecules between water and smectic mesophases of dipalmitoyl phosphatidylcholine. Biochem. Soc. Trans. 3, 149152.CrossRefGoogle ScholarPubMed
Hill, T. L. (1980). Examination of the conventional assumption of internal equilibrium within the states of a biochemical cycle. Proc. natn. Acad. Sci. U.S.A. 77, 205209.CrossRefGoogle ScholarPubMed
Hinz, H. J., Shiao, D. D. F. & Sturtevant, J. M. (1971). Calorimetric investigation of inhibitor binding to rabbit muscle aldolase. Biochemistry, Philad. 10, 13471352.Google ScholarPubMed
Hinz, H.-J. & Sturtevant, J. M. (1972). Calorimetric studies of dilute aqueous suspensions of bilayers formed from synthetic L-αlecithins. J. biol. Chem. 247, 60716075.CrossRefGoogle Scholar
Hochachka, P. W. (1974). Temperature and pressure dependence of the binding site of acetylcholinesterase. Biochem. J. 143, 535539.CrossRefGoogle Scholar
Hochachka, P. W. (1975 a). Fitness of enzyme binding sites for their physical environment: coenzyme and substrate binding sites of M4 lactate dehydrogenases. Comp. Biochem. Physiol. 52B, 2531.Google ScholarPubMed
Hochachka, P. W. (1975 b). Functional design of M4 lactate dehydrogenase binding site for its physical environment. Fedn. Proc. 34, 523.Google Scholar
Hochachka, P. W. (1975 c). Biochemistry at depth. Pressure effects on biochemical systems of abyssal and midwater organisms: the 1973 Kona expedition of the Alpha Helix. Comp. Biochem. Physiol. 52B, 1202.Google Scholar
Hochachka, P. W. & Lewis, J. (1970). Unique regulatory properties of trout citrate synthase isoenzymes. Fedn. Proc. 29, 887.Google Scholar
Hochachka, P. W., Norberg, C., Baldwin, J. & Fields, J. H. A. (1976). Enthalpy-entropy compensation of oxamate binding by homologous lactate dehydrogenases. Nature, Lond. 260, 648650.CrossRefGoogle ScholarPubMed
Hochachka, P. W. & Somero, G. N. (1969). The significance of enzyme substrate affinity in determining thermal behavior of multi-enzyme systems. Fedn. Proc. 28, 806.Google Scholar
Hochachka, P. W. & Somero, G. N. (1973). Strategies of Biochemical Adaptation, pp. 179303. Philadelphia, London and Toronto: W. B. Saunders.Google Scholar
Hochachka, P. W., Storey, K. B. & Baldwin, J. (1975). Design of acetyicholinesterase for its physical environment. Comp. Biochem. Physiol. 52B, 1318.Google Scholar
Hoffmann, W., Sarzala, M. G. & Chapman, D. (1979). Rotational motion and evidence for oligomeric structures of sacroplasmic reticulum Ca2+-activated ATPase. Proc. natn. Acad. Sci. U.S.A. 76, 38603864.CrossRefGoogle Scholar
Horne, R. A. (1972). Water and Aqueous Solutions: Structure, Thermodynamics, and Transport Processes. New York: Wiley-Interscience.Google Scholar
Horvath, L. I., Cirak, J. & Vigh, L. (1980). Relation of Raman order parameters to spin labelling parameters. Chem. Phys. Lipids 27, 237250.CrossRefGoogle Scholar
Horvath, C., Melander, W. & Molnar, I. (1977). Liquid chromatography of ionogenic substances with non-polar stationary phases. Analyt. Chem. 49, 142154.CrossRefGoogle Scholar
Horvath, C. & Melander, W. (1978). Reversed-phase chromatography and the hydrophobic effect. Am. Lab. 10, 17.Google Scholar
Hubbell, W. L. & McConnell, H. M. (1971). Molecular motion in spin-labeled phospholipids and membranes. J. Am. chem. Soc. 93, 314326.Google ScholarPubMed
Israelachvili, J. N. (1974). Van der Waals forces in biological systems. Q. Rev. Biophys. 6, 341387.CrossRefGoogle Scholar
Israelachvili, J. N., Mitchell, D. J. & Ninham, B. W. (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. chem. Soc. Faraday Trans. II 72, 15251568.CrossRefGoogle Scholar
Jähnig, F. (1979). Molecular theory of lipid membrane order. J. chem. Phys. 70, 32793290.CrossRefGoogle Scholar
Janin, J. (1979). Surface and inside volumes in globular proteins. Nature, Lond. 277, 491492.CrossRefGoogle ScholarPubMed
Johansson, L. B.-Å. & Lindblom, G. (1980). Orientation and mobility of molecules in membranes studied by polarized light spectroscopy. Q. Rev. Biophys. 13, 63118.CrossRefGoogle ScholarPubMed
Johnson, F. H., Eyring, H. & Stover, B. J. (1974). The Theory of Rate Processes in Biology and Medicine, ch. 3, pp. 155272. New York and London: John Wiley.Google Scholar
Kanehisa, M. I. & Tsong, T. Y. (1978). Cluster. model of lipid phase transitions with application to passive permeation of molecules and structure relaxations in lipid bilayers. J. Am. chem. Soc. 100, 424432.CrossRefGoogle Scholar
Kasper, A. M. & Helmkamp, G. M. (1981). Protein-catalyzed phospholipid exchange between gel and liquid-crystalline phospholipid vesicles. Biochemistry, Philad. 20, 146151.CrossRefGoogle ScholarPubMed
Katz, Y. & Diamond, J. M. (1974 a). Thermodynamic constants for nonelectrolyte partition between dimyristoyl lecithin and water. J. Membrane Blot. 17, 101120.CrossRefGoogle ScholarPubMed
Katz, Y. & Diamond, J. M. (1974 b). A method for measuring nonelectrolyte partition coefficients between liposomes and water. J. Membrane Biot. 17, 6986.CrossRefGoogle ScholarPubMed
Kauzmann, W. (1959). Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14,163.CrossRefGoogle ScholarPubMed
Kawato, S., Ikegami, A., Yoshida, S. & Orii, Y. (1980). Fluorescent probe study of temperature-induced conformational changes in cytochrome oxidase in lecithin vesicles and solubilized systems. Biochemistry, Philad. 19, 15981603.CrossRefGoogle ScholarPubMed
Kedem, O. & Katchalsky, A. (1958). Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. biophys. Acta 27, 229246.CrossRefGoogle ScholarPubMed
Kistiakowsky, G. B. & Lumry, R. (1949). Anomalous temperature effects in the hydrolysis of urea by urease. J. Am. chem. Soc. 71, 20062013.CrossRefGoogle Scholar
Kittel, C. (1958). Etementary Statisticat Physics, pp. 8691. New York and London: John Wiley.Google Scholar
Klausner, R. D., Bridges, K., Tsunoo, H., Blumenthal, R., Weinstein, J. N. & Ashwell, G. (1980). Reconstitution of the hepatic asialoglycoprotein receptor with phospholipid vesicles. Proc. natn. Acad. Sci. U.S.A. 77, 50875091.CrossRefGoogle ScholarPubMed
Klausner, R. D., Kleinfeld, A. M., Hoover, R. L. & Karnovsky, M. J. (1980). Lipids domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J. biol. Chem. 255, 12861295.CrossRefGoogle ScholarPubMed
Klausner, R. D. & Wolfe, D. E. (1980). Selectivity of fluorescent lipid analogues for lipid domains. Biochemistry Philad. 19, 61996203.CrossRefGoogle ScholarPubMed
Klein, R. A. (1972). Phosphatidyl choline molecular species. Ph.D. Thesis, University of Cambridge.Google Scholar
Klein, R. A. & Ellory, J. C. (1980). Interaction of alkyl ammonium derivatives with red cells: hemolysis and sodium pump inhibition studies. J. Membrane Biol. 55, 123131.CrossRefGoogle ScholarPubMed
Klein, R. A., Miller, N. G. A., Kemp, P. & Laser, H. W. (1975). The activation of phospholipase C from Ctostridium welchii by quinine: an absolute requirement for calcium ions. Chem. Phys. Lipids 15, 1526.CrossRefGoogle ScholarPubMed
Klein, R. A., Moore, M. J. & Smith, M. W. (1971 a). Diffusion of neutral amino acids across lipid bilayers. J. Physiol. 210, 3334P.Google Scholar
Klein, R. A., Moore, M. J. & Smith, M. W. (1971 b). Selective diffusion of neutral amino acids across lipid bilayers. Biochim. biophys. Acta 233 420433.CrossRefGoogle ScholarPubMed
Knox, J. H. (1971). Molecular Thermodynamics. New York and London: Wiley Interscience.Google Scholar
Lee, A. G. (1977). Analysis of the defect structure of gel-phase lipid. Biochemistry, Philad. 16, 835841.CrossRefGoogle ScholarPubMed
Lee, A. G., Birdsall, N. J. M. & Metcalfe, J. C. (1974). Nuclear magnetic relaxation and the biological membrane. Methods Membr. Biol. 2, 156.Google Scholar
Lee, A. G., Birdsall, N. J. M., Metcalfe, J. C., Toon, P. A. & Warren, G. B. (1974). Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes. Biochemistry, Philad. 13, 36993705.CrossRefGoogle ScholarPubMed
Lelkes, P. I., Bach, D. & Miller, I. R. (1980). Perturbations of membrane structure by optical probes. II. Differential scanning calorimetry of dipalmitoyl lecithin and its analogs interacting with Merocyanine 540. J. Membrane Biol. 54, 141148.CrossRefGoogle Scholar
Lelkes, P. I. & Miller, I. R. (1980). Perturbations of membrane structure by optical probes. I. Location and structural sensitivity of Merocyanine 540 bound to phospholipid membranes. J. Membrane Biol. 52, 115.CrossRefGoogle ScholarPubMed
Lentz, B. R., Barenholz, Y. & Thompson, T. E. (1976 a). Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. I. Single component phosphatidylcholine liposomes. Biochemistry, Philad. 15, 45214528.CrossRefGoogle ScholarPubMed
Lentz, B. R., Barenholz, Y. & Thompson, T. E. (1976 b). Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2. Two component phosphatidylcholine liposomes. Biochemistry, Philad. 15, 4529–4437.CrossRefGoogle ScholarPubMed
Lentz, B. R., Barrow, D. A. & Hoechli, M. (1980). Cholesterolphosphatidylcholine interactions in multilamellar vesicles. Biochemistry, Philad. 19, 19431954.CrossRefGoogle ScholarPubMed
Lentz, B. R., Freire, E. & Biltonen, R. L. (1978). Fluorescence and calorimetric studies of phase transitions in phosphatidyicholine multi-layers: kinetics of the pretransition. Biochemistry, Philad. 17, 44754480.CrossRefGoogle Scholar
Leo, A., Hansch, C. & Elkins, D. (1971). Partition coefficients and their uses. Chem. Rev. 71, 525616.CrossRefGoogle Scholar
Lichtenberger, L. M., Delansorne, R. & Graziani, L. A. (1982). Importance of amino acid uptake and decarboxylation in gastrin release from isolated G cells. Nature, Lond. 295, 698700.CrossRefGoogle ScholarPubMed
Lieb, W. R. & Stein, W. D. (1969). Biological membranes behave as non-porous polymeric sheets with respect to the diffusion of non-electrolytes. Nature, Lond. 224, 240243.CrossRefGoogle Scholar
Lieb, W. R. & Stein, W. D. (1971). Implications of two different types of diffusion for biological membranes. Nature, Lond. 234, 220222.Google ScholarPubMed
Linden, C. D. & Fox, C. F. (1973). A comparison of characteristic temperatures for transport in two unsaturated fatty acid auxotrophs of Escherichia coli. J. Supramol. Struct. I, 535544.CrossRefGoogle Scholar
Linden, C. D., Keith, A. D. & Fox, C. F. (1973). Correlations between fatty acid distribution in phospholipids and the temperature dependence of the membrane physical state. J. Supramol. Struct. I, 523534.CrossRefGoogle Scholar
Linden, C. D., Wright, K. L., McConnell, H. M. & Fox, C. F. (1973). Lateral phase separations in membrane lipids and the mechanisms of sugar transport in Escherichia roll. Proc. natn. Acad. Sci. U.S.A. 70, 22712275.CrossRefGoogle Scholar
Littlewood, A. B. (1970). Gas Chromatography. Principles, Techniques and Applications. New York and London: Academic Press.Google Scholar
Loftfield, R. B., Eigner, E. A., Pastuszyn, A., Lövgren, T. N. E. & Jakubowski, H. (1980). Conformational changes during enzyme- catalysis: role of water in the transition state. Proc. natn. Acad. Sci. U.S.A. 77, 33743378.CrossRefGoogle ScholarPubMed
Low, P. S., Bada, J. L. & Somero, G. N. (1973). Temperature adaptation of enzymes: roles of the free energy, the enthalpy, and the entropy of activation. Proc. natn. Acad. Sci. U.S.A. 70, 430432.CrossRefGoogle ScholarPubMed
Low, P. S. & Somero, G. N. (1974). Temperature adaptation of enzymes. A proposed molecular basis for the different catalytic efficiencies of enzymes from ectotherms and endotherms. Comp. Biochem. Physiol. 49B, 307312.Google ScholarPubMed
Low, P. S. & Somero, G. N. (1975 a). Activation volumes in enzymic catalysis. Their sources and modification by low molecular weight solutes. Proc. natn. Acad. Sci. U.S.A. 72, 30143018.CrossRefGoogle ScholarPubMed
Low, P. S. & Somero, G. N. (1975 b). Protein hydration changes during catalysis. A new mechanism of enzymic rate enhancement and ion activation-inhibition of catalysis. Proc. natn. Acad. Sci. U.S.A. 72, 33053309.CrossRefGoogle ScholarPubMed
Low, P. S. & Somero, G. N. (1975 c). Pressure effects on enzyme structure and function in vitro and under simulated in vitro conditions. Comp. Biochem. Physiol. 52B, 6774.Google Scholar
Low, P. S. & Somero, G. N. (1976). Adaptation of muscle pyruvate kinases EC-2.7.1.40 to environmental temperatures and pressures. J. exp. Zool. 198, 111.CrossRefGoogle ScholarPubMed
Lukasiewicz, R. J. & Dreizen, P. (1977). Effects of temperature on the activation volume of myosin ATPase. Biophys. J. 17, 37A.Google Scholar
Lumry, R. (1971). Protein conformations, ‘rack’ mechanisms and water. Adv. chem. Phys. 21, 567580.Google Scholar
Lumry, R. (1973). Some recent ideas about the nature of the interactions between proteins and liquid water. Journal of Food Science 38, 744755.CrossRefGoogle Scholar
Lumry, R. (1974 a). Conformational mechanisms for free energy transduction in protein systems: old ideas and new facts. Ann. N. Y. Acad. Sci. 227, 4673.CrossRefGoogle ScholarPubMed
Lumry, R. (1974 b). Participation of water in protein reactions. Ann. N. Y. Acad. Sci. 227, 471485.CrossRefGoogle ScholarPubMed
Lumry, R., Jolicoeur, C. & Battistel, E. (1980). Some ways to use thermodynamic information to characterize linkage systems. Biophys. J. 32, 648651.CrossRefGoogle ScholarPubMed
Lumry, R. & Rajender, S. (1970). Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers 9, 11251227.CrossRefGoogle ScholarPubMed
MacDonald, A. G. (1975). Physiological Aspects of Deep Sea Biology. Cambridge University Press.Google ScholarPubMed
MacDonald, A. G. (1978). A dilatometric investigation of the effects of general anesthetic alcohols and hydrostatic pressure on the phase transition in smectic mesophases of dipalmitoylphosphatidyl choline. Biochim. biophys. Acta 507, 2637.CrossRefGoogle Scholar
MacDonald, A. G. & MacNaughtan, W. (1979). The effect of high hydrostatic pressure on the membrane-bound ATPase of Acholeplasma laidlawii B. J. Physiol. 296, 105P106P.Google ScholarPubMed
McElhaney, R. N. (1982). The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes. Chem. Phys. Lipids 30, 229259.CrossRefGoogle ScholarPubMed
Mabrey, S. & Sturtevant, J. M. (1976). Investigation of phase transitions of lipids and lipid mixtures by high sensitivity differential scanning calorimetry. Proc. natn. Acad. Sci. U.S.A. 73, 38623866.CrossRefGoogle Scholar
Mabrey, S. & Sturtevant, J. M. (1978). High-sensitivity scanning calorimetry in the study of biomembranes and related model systems. Methods Memb. Biol. 9, 237274.CrossRefGoogle Scholar
Madden, T. D. & Quinn, P. J. (1979). Arrhenius discontinuties of Ca2+-ATPase activity are unrelated to changes in membrane lipid fluidity of sarcoplasmic reticulum. FEBS Lett. 107, 110152.CrossRefGoogle Scholar
Marcelja, S. (1974 a). Chain ordering in liquid crystals. II. Structure of bilayer membranes. Biochim. biophys. Acta 367, 165176.CrossRefGoogle ScholarPubMed
Marcelja, S. (1974 b). Chain ordering in liquid crystals. I. Even-odd effect. J. chem. Phys. 60, 35993604.CrossRefGoogle Scholar
Marsh, D. (1980). Molecular motion in phospholipid bilayers in the gel phase: long axis rotation. Biochemistry, Philad. 19, 16321637.CrossRefGoogle ScholarPubMed
Marsh, D., Watts, A. & Knowles, P. F. (1976). Evidence for phase boundary lipid. Permeability of tempo-choline into dimyristoylphosphatidyicholine vesicles at the phase transition. Biochemistry 15, 35703578.CrossRefGoogle ScholarPubMed
Marsh, D., Watts, A. & Knowles, P. F. (1977). Cooperativity of the phase transition in single- and multibilayer lipid vesicles. Biochim. biophys. Acta 465, 500554.CrossRefGoogle ScholarPubMed
Melchior, D. L. & Steim, J. M. (1979). Lipid-associated thermal events in biomembranes. Prog. Surf. & Membrane Sci. 13, 211296.CrossRefGoogle Scholar
Melchior, D. L., Scavitto, F. J. & Steim, J. M. (1980). Dilatometry of dipalmitoyllecithin-cholesterol bilayers. Biochemistry, Philad. 19, 48284834.CrossRefGoogle ScholarPubMed
Michaelis, L. & Menten, M. L. (1913). Die kinetik der invertinwirkung. Biochem. Z. 49, 333369.Google Scholar
Mitchell, P. (1970). Reversible coupling between transport and chemical reactions. In Membranes and Ion Transport (ed. Bittar, E. E.), pp. 592–256. New York: John Wiley.Google Scholar
Moelwyn-Hughes, E. A. (1947). The Kinetics of Reactions in Solution, 2nd edn.Oxford University Press.Google Scholar
Moon, T. W. & Hochachka, P. W. (1971). Temperature and enzyme activity in poikilotherms. Isocitrate dehydrogenases in rainbow-trout liver. Biochem. J. 123, 695705.CrossRefGoogle ScholarPubMed
Muhoberac, B. B. & Brill, A. S. (1980). Association of alcohols with heme proteins: optical analysis and thermodynamic models. Bio chemistry, Philad. 19, 51575167.Google ScholarPubMed
Nagle, J. F. (1973). Theory of biomembrane phase transitions. J. chem. Phys. 58, 252264.CrossRefGoogle Scholar
Narashi, T. & Frazier, D. T. (1968). Site of action and active form of local anesthetics in nerve fibers. Fedn Proc. 27, 408.Google Scholar
Nemethy, G. & Scheraga, H. A. (1962). Structure of water and hydrophobic bonding in proteins. II. Model for the thermodynamic properties of aqueous solutions of hydrocarbons. J. chem. Phys. 36, 34013417.CrossRefGoogle Scholar
Nemethy, G., Scheraga, H. A. & Kauzmann, W. (1968). Comments on the communication ‘A criticism of the term “Hydrophobic Bond” by Joel H. Hildebrand. J. Phys. Chem. 72, 1842.CrossRefGoogle Scholar
Nevo, A., De, Vries A. & Katchalsky, A. (1955). Interaction of basic polyamino acids with the red blood cell. I. Combination of polylysine with single cells. Biochim. biophys. Acta 17, 536547.CrossRefGoogle ScholarPubMed
Nigg, E. A. & Cherry, R. J. (1979). Influence of temperature and cholesterol on the rotational diffusion of Band 3 in the human erythrocyte membrane. Biochemistry, Philad. 18, 34573465.CrossRefGoogle ScholarPubMed
Nimmo, I. A., Atkins, G. L., Strange, R. C. & Percy-Robb, I. W. (1977). An evaluation of ways of using equilibrium dialysis to quantify the binding of ligand to macromolecules. Biochem. J. 16, 107110.CrossRefGoogle Scholar
Nozaki, Y. & Tanford, C. (1971). The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. J. biol. Chem. 246, 22112217.CrossRefGoogle ScholarPubMed
Obaid, A. L., Leininger, T. F. & Crandall, E. D. (1980). Exchange of HCO3- for monovalent anions across the human erythrocyte membrane. J. Membrane Biol. 52, 173179.CrossRefGoogle ScholarPubMed
Oster, G. F., Perelson, A. S. & Katchalsky, A. (1973). Network thermodynamics: dynamic modelling of biophysical systems. Q. Rev. Biophys. 6, 1134.CrossRefGoogle ScholarPubMed
Overfield, R. E. & Wright, C. A. (1980). Oxidation of cytochromes c and c 2 by bacterial photosynthetic reaction centres in phospholipid vesicles. I. Studies with negative membranes. Biochemistry, Philad. 19, 33283334.CrossRefGoogle ScholarPubMed
Owicki, J. C. & McConnell, H. M. (1980). Lateral diffusion in inhomogeneous membranes. Model membranes containing cholesterol. Biophys. J. 30, 383398.CrossRefGoogle ScholarPubMed
Page, M. I. & Jencks, W. P. (1971). Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc. natn. Acad. Sci. U.S.A. 68, 16781683.CrossRefGoogle ScholarPubMed
Paterson, E. (1970). Irreversible thermodynamics as applied to biological systems. In Membranes and Ion Transport (ed. Bittar, E. E.), pp. 123164. New York: John Wiley.Google Scholar
Paule, M. R. (1971). The effect of temperature on the kinetics of adenosine diphosphoglucose pyrophosphorylase from Rhodospirillum rubrum. Biochemistry, Philad. 10, 45094517.CrossRefGoogle ScholarPubMed
Pierce, B. (1852). Criterion for the rejection of doubtful observations. Astr. J. 2, 161163.CrossRefGoogle Scholar
Pink, D. A. & Chapman, D. (1979). Protein-lipid interactions in bilayer membranes: a lattice model. Proc. natn. Acad. Sci. U.S.A. 76, 15421546.CrossRefGoogle ScholarPubMed
Pink, D. A., Green, T. J. & Chapman, D. (1980). Raman scattering in bilayers of saturated phosphatidylcholines. Experiment and theory. Biochemistry, Philad. 19, 349356.CrossRefGoogle ScholarPubMed
Pownall, H. J., Massey, J. B., Kusserow, S. K. & Gotto, A. M. (1978). Kinetics of lipid-protein interactions: interaction of Apolipoprotein A-I from human plasma high density lipo-proteins with phosphatidyicholines. Biochemistry, Philad. 17, 11831188.CrossRefGoogle Scholar
Putter, A. (1914). Temperaturkoeffizienten. Z. aug. Physiol. 16, 574627.Google Scholar
Quinn, P. J. (1981). The fluidity of cell membranes and its regulation. Frog. Biophys. molec. Biol. 38, 1104.CrossRefGoogle ScholarPubMed
Reisenfeld, E. H. (1931). ‘Great Men: Studies on Gene Biology’ (ed. Ostwald, W.). Vol. II. Svante Arrhenius. Leipzig: Akademische Verlagsgesellschaft M.B.H.Google Scholar
Rekker, R. F. (1977). The Hydrophobic Fragmental Constant. Amsterdam, Oxford and New York: Elsevier.Google Scholar
Reynolds, J. A., Gilbert, D. B. & Tanford, C. (1974). Empirical correlation between hydrophobic free energy and aqueous cavity surface area. Proc. natn. Acad. Sci. U.S.A. 71, 29252927.CrossRefGoogle ScholarPubMed
Ritchie, J. M. & Greengard, P. (1961). On the structure of local anaesthetics. J. Pharmac. exp. Ther. 133, 241245.Google Scholar
Ritchie, J. M. & Greengard, P. (1966). On the mode of action of local anesthetics. A. Rev. Pharmac. 6, 405430.CrossRefGoogle ScholarPubMed
Roberts, D. V. (1977). Enzyme Kinetics. Cambridge University Press.Google Scholar
Roberts, D. V. & Elmore, D. T. (1974). Kinetics and mechanism of catalysis by proteolytic enzymes. Biochem. J. 141, 545554.CrossRefGoogle ScholarPubMed
Robertson, J. D. (1960). The molecular structure and contact relationships of cell membranes. Frog. Biophys. biophys. Chem. 10, 343418.Google ScholarPubMed
Rosano, H. L., Duby, P. & Schulman, J. H. (1961). Mechanism of the selective flux of salts and water migration through non-aqueous liquid membranes. J. phys. Chem. 65, 17041708.CrossRefGoogle Scholar
Rossi-Fanelli, A. & Antonini, O. (1960). Oxygen equilibrium of haemoglobin from Thunnus thynnus. Nature, Lond. 186, 895896.CrossRefGoogle ScholarPubMed
Rossi-Fanelli, A., Antonini, E. & Giuffré, R. (1960). Oxygen equilibrium of myoglobin from Thunnus thynnus. Nature, Land. 186, 896897.CrossRefGoogle ScholarPubMed
Roth, S. & Seeman, P. (1972). The membrane concentrations of neutral and positive anaesthetics (alcohols, chiorpromazine, morphine) fit the Meyer-Overton rule of anaesthesia: negative anaesthetics do not. Biochim. biophys. Acta 255, 207219.CrossRefGoogle ScholarPubMed
Rothschild, K. J., Ellias, S. A., Essig, A. & Stanley, H. E. (1980). Non-equilibrium linear behaviour of biological systems. Existence of enzyme-mediated multidimensional inflection points. Biophys. J. 30, 209230.CrossRefGoogle Scholar
Rottenberg, H., Caplan, S. R. & Essig, A. (1970). A thermodynamic appraisal of oxidative phosphorylation with special reference to ion transport by mitochondria. In Membranes and Ion Transport (ed. Bittar, E. E.), pp. 165191. New York: John Wiley.Google Scholar
Rubenstein, J. L. R., Owicki, I. C. & McConnell, H. M. (1980). Dynamic properties of binary mixtures of phosphatidylcholines and cholesterol. Biochemistry, Philad. 19, 569573.CrossRefGoogle ScholarPubMed
Saenger, W. (1980). Cyclodextrin inclusion compounds in research and industry. Angew. Chem. 19, 344362.CrossRefGoogle Scholar
Sallee, V. L. (1975). Permeation coefficients for long chain fatty acids in rat intestine. Fedn. Proc. 34, 310.Google Scholar
Sallee, V. L. (1978). Fatty acid and alcohol partitioning with intestinal brush border and erythrocyte membranes. J. Membrane Biol. 43, 187201.CrossRefGoogle ScholarPubMed
Schilling, R. J. & Reitz, R. C. (1980). A mechanism for ethanol-induced damage to liver mitochondrial structure and function. Biochim. biophys. Acta 603, 266277.CrossRefGoogle ScholarPubMed
Schoolfield, R. M., Sharpe, P. J. H. & Magnuson, C. E. (1981). Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. theor. Biol. 88, 719731.CrossRefGoogle ScholarPubMed
Schroeder, F. & Gog, E. H. (1980). Effect of fatty acids on physical properties of microsomes from isolated perfused rat liver. Chem. Phys. Lipids 26, 207224.CrossRefGoogle ScholarPubMed
Scwartz, T. L. (1971). The thermodynamic foundations of membrane physiology. In Biophysics and Physiology of Exitable Membranes, ch. 2 (ed. Adelman, W. J.), pp. 4795. New York: Van Nostrand.Google Scholar
Scott, H. L. & Cheng, W.-H. (1979). A theoretical model for lipid mixtures, phase transitions, and phase diagrams. Biophys. J. 28, 117132.CrossRefGoogle ScholarPubMed
Seelig, J. (1977). Deuterium magnetic resonance: theory and application to lipid membranes. Q. Rev. Biophys. 10, 353418.CrossRefGoogle ScholarPubMed
Seelig, J. & Seelig, A. (1980). Lipid conformation in model membranes and biological membranes. Q. Rev. Biophys. 13, 1961.CrossRefGoogle ScholarPubMed
Seeman, P. & Roth, S. (1972). General anaesthetics expand cell membranes at surgical concentrations. Biochim. biophys. Acta 255, 171177.CrossRefGoogle ScholarPubMed
Segel, I. H. (1975). Enzyme Kinetics. New York: John Wiley.Google Scholar
Shiao, D. D. F., Lumry, R. & Rajender, S. (1972). Modification of protein properties by change in charge. Succinylated chymotrypsin. Eur. J. Biochem. 29, 377385.CrossRefGoogle Scholar
Shimsick, E. J. & McConnell, H. M. (1973). Lateral phase separation in phospholipid membranes. Biochemistry, Philad. 12, 23512360.CrossRefGoogle Scholar
Shinitsky, M. & Barenholz, Y. (1978). Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim. biophys. Acta 515, 367394.CrossRefGoogle Scholar
Siebenaller, J. & Somero, G. N. (1978). Pressure-adaptive differences in lactate dehydrogenases of congeneric fishes living at different depths. Science, N. Y. 201, 255257.CrossRefGoogle ScholarPubMed
Silvius, J. R. & McElhaney, R. N. (1979 a). Effects of phospholipid acyl chain structure on physical properties. I. Isobranched phosphatidylcholines. Chem. Phys. Lipids 24, 287296.CrossRefGoogle Scholar
Silvius, J. R. & McElhaney, R. N. (1979 b). Effects of phospholipid acyl chain structure on thermotropic phase properties. 2. Phosphatidylcholines with unsaturated or cyclopropane chains. Chem. Phys. Lipids 25, 125134.CrossRefGoogle Scholar
Silvius, J. R. & McElhaney, R. N. (1980 a). Effects of phospholipid acyl chain structure on thermotropic phase properties. 3. Phosphatidyl cholines with (−) and (±) anteiso acyl chains. Chem. Phys. Lipids 26, 6777.CrossRefGoogle Scholar
Silvius, J. R. & McElhaney, R. N. (1980 b). Membrane lipid physical state and modulation of the Na+, Mg2+-ATPase activity in Acholeplasma laidlawii B. Proc. natn. Acad. Sci. U.S.A. 77, 12551259.CrossRefGoogle ScholarPubMed
Silvius, J. R. & McElhaney, R. N. (1981). Non-linear Arrhenius plots and the analysis of reaction and motional rates in biological membranes. J. theor. Biol. 88, 135152.CrossRefGoogle ScholarPubMed
Silvius, J. R., Read, B. D. & McElhaney, R. N. (1978). Membrane enzymes: artifacts in Arrhenius plots due to temperature-dependence of substrate-binding affinity. Science, N. Y. 199, 902904.CrossRefGoogle ScholarPubMed
Sinanoglu, O. (1968). Solvent effects on molecular associations. In Molecular Associations in Biology (ed. Pullman, B.), pp. 427445. New York and London: Academic Press.Google Scholar
Sinanoglu, O. & Abdulnur, S. (1965). Effect of water and other solvents on the structure of biopolymers. Fedn Proc. 24, 512523.Google ScholarPubMed
Singer, M. (1979). Interaction of small molecules with phospho-lipid bilayer membranes: permeability studies. Chem. Phys. Lipids 25, 1528.CrossRefGoogle Scholar
Singer, S. J. (1974). The molecular organization of membranes. Ann. Rev. Biochem. 43, 805–833.Google ScholarPubMed
Singer, S. J. & Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science, N. Y. 175, 720731.CrossRefGoogle ScholarPubMed
Sklar, L. A., Hudson, B. S. & Simoni, R. D. (1977). Conjugated polyene fatty acids as fluorescent probes: synthetic phospholipid membrane studies. Biochemistry, Philad. 16, 819828.CrossRefGoogle ScholarPubMed
Sklar, L. A., Miljanich, G. P. & Dratz, E. A. (1979). Phospholipid lateral phase separation and the partition of cis-parinaric acid and trans-parinaric acid among aqueous, solid lipid and fluid lipid phases. Biochemistry, Philad. 18, 17071716.CrossRefGoogle ScholarPubMed
Smith, L. M., Rubenstein, J. R., Parce, J. W. & McConnell, H. M. (1980). Lateral diffusion of M- 13 coat protein in mixtures of phosphatidylcholine and cholesterol. Biochemistry, Philad. 19, 5907–5911.Google ScholarPubMed
Snyder, B. & Freire, E. (1980). Composition domain structure in phosphatidyl choline-cholesterol and sphingomyelin-cholesterol bilayers. Proc. natn. Acad. Sci. U.S.A. 77, 40554059.CrossRefGoogle Scholar
Sokal, R. R. & Rohlf, F. J. (1969). Biometry. The Principles and Practice of Statistics in Biological Research. San Francisco: W. H. Freeman.Google Scholar
Soll, A. H. (1967). A new approach to molecular configuration applied to aqueous pore transport. J. gen. Physiol. 50, 25652578.CrossRefGoogle ScholarPubMed
Somero, G. N. (1969). Pyruvate kinase variants of the Alaskan King-crab. Evidence for a temperature-dependent inter-conversion between two forms having distinct and adaptive kinetic properties. Biochem. J. 114, 237241.CrossRefGoogle Scholar
Somero, G. N. & Hochachka, P. W. (1969). Isoenzymes and short-term temperature compensation in poikilotherms: activation of lactate dehydrogenase isoenzymes by temperature decreases. Nature, Lond. 223, 194195.CrossRefGoogle ScholarPubMed
Somero, G. N. & Low, P. S. (1977). Enzyme hydration may explain catalytic efficiency differences among lactate dehydrogenase homologues. Nature, Lond. 266, 276278.CrossRefGoogle ScholarPubMed
Somero, G. N., Neubauer, M. & Low, P. S. (1977). Neutral salt effects on the velocity and activation volume of the lactate dehydrogenase reaction: evidence for enzyme hydration changes during catalysis. Archs. Biochem. Biophys. 181, 438446.CrossRefGoogle ScholarPubMed
Somero, G. N. & Siebenaller, J. F. (1979). Inefficient lactate dehydrogenases of deep-sea fishes. Nature, Lond. 282, 100102.CrossRefGoogle ScholarPubMed
Stein, W. D. (1967). The Movement of Molecules across Cell Membranes, pp. 7075. New York and London: Academic Press.Google Scholar
Stein, W. D. & Nir, S. (1971). On the mass dependence of diffusion within biological membranes and polymers. J. Membrane Biol. 5, 246249.CrossRefGoogle ScholarPubMed
Steiner, M. (1981). Vitamin E changes the membrane fluidity of human platelets. Biochim. biophys. Acta 640, 100105.CrossRefGoogle ScholarPubMed
Stewart, G. W., Ellory, J. C. & Klein, R. A. (1980). Increased human red cell cation passive permeability below 12°C. Nature, Lond. 286, 403404.CrossRefGoogle Scholar
Strittmatter, P. & Rogers, M. J. (1975). Apparent dependence of interactions between cytochrome b 5, and cytochrome b 5 reductase upon translational diffusion in dimyristoyl lecithin liposomes. Proc. natn. Acad. Sci. U.S.A. 72, 26582661.CrossRefGoogle ScholarPubMed
Stümpel, J., Nicksch, A. & Eibl, H. (1981). Calorimetric studies on saturated mixed-chain lecithin-water systems. Non-equivalence of acyl chains in the thermotropic phase transition. Biochemistry, Philad. 20, 661665.Google ScholarPubMed
Sturtevant, J. M. & Matep, P. L. (1978). Proposed temperature-dependent conformational transition in D-amino acid oxidase: a differential scanning calorimetric study. Proc. natn. Acad. Sci. U.S.A. 75,25842587.CrossRefGoogle Scholar
Susi, H., Byler, D. M. & Damert, W. C. (1980). Raman intensities of carbon-carbon stretching modes in a model membrane. Chem. Phys. Lipids 27, 337344.CrossRefGoogle Scholar
Swaney, J. B. (1980 a). Properties of lipid-apolipoprotein association products. Complexes of human Apo A-I and binary phospholipid mixtures. J. biol. Chem. 255, 87988803.CrossRefGoogle ScholarPubMed
Swaney, J. B. (1980 b). Mechanisms of protein-lipid interaction. Association of apolipoproteins AI and AII with binary phospholipid mixtures. J. biol. Chem. 255, 87918797.CrossRefGoogle ScholarPubMed
Swaney, J. B. & Chang, B. C. (1980). Thermal dependence of apoliprotein A-I phospholipid recombination. Biochemistry, Philad. 19, 56375644.CrossRefGoogle Scholar
Taft, R. W. & Grob, C. A. (1974). Concerning the separation of polar and resonance effects in the ionization of 4-substituted pyridinium ions. J. Am. chem. Soc. 96, 12361238.CrossRefGoogle Scholar
Talsky, G. (1971). The anomalous temperature dependence of enzyme-catalyzed reactions. Angew. Chem. 10, 548554.CrossRefGoogle Scholar
Tanford, C. (1962). Contribution of hydrophobic interactions to the stability of the globular conformation of proteins. J. Am. chem. Soc. 84, 42404247.CrossRefGoogle Scholar
Tanford, C. (1973). The Hydrophobic Effect: Formation of Micelles and Biological Membranes. New York and London: John Wiley.Google Scholar
Tanford, C. (1979). Interfacial free energy and the hydrophobic effect. Proc. natn. Acad. Sci. U.S.A. 76, 41754176.CrossRefGoogle ScholarPubMed
Taraschi, T. & Mendelsohn, R. (1980). Lipid-protein interaction in the glycophorin-dipalmitoyl phosphatidylcholine system: Raman spectroscopic investigation. Proc. natn. Acad. Sci. U.S.A. 77, 23622366.CrossRefGoogle Scholar
Thilo, L., Trauble, H. & Overath, P. (1977). Mechanistic interpretation of the influence of lipid phase transitions on transport functions. Biochemistry, Philad. 16, 12831290.CrossRefGoogle ScholarPubMed
Thudichum, J. L. W. (1884). The Chemical Constitution of the Brain. London: Bailliere, Tindall & Cox.Google Scholar
Thulborn, K. R. (1981). The use of N-(9-anthroyloxy) fatty acids as fluorescent probes for biomembranes. In Fluorescent Probes, ch. 6 (ed. Beddard, G. S. &West, M. A.), pp. 113141. New York and London: Academic Press.Google Scholar
Ting, H. P., Bertrand, G. L. & Sears, D. F. (1966). Diffusion of salts across a butanol-water interface. Biophys. J. 6, 813823.CrossRefGoogle ScholarPubMed
Trauble, H. (1971). The movement of molecules across lipid membranes: a molecular theory. J. Membrane Biol. 4, 193208.CrossRefGoogle ScholarPubMed
Tsong, T. Y., Hearn, R. P., Wrathall, D. P. & Sturtevant, J. M. (1970). A calorimetric study of thermally-induced conformational transitions of Ribonuclease A and certain of its derivatives. Biochemistry, Philad. 9, 26662677.CrossRefGoogle ScholarPubMed
Urry, D. W., Venkatachalam, C. M., Spisni, A., Läuger, P. & Khaled, M. A. (1980). Rate theory calculation of gramicidin single-channel currents using NMR-derived rate constants. Proc. natn. Acad. Sci. U.S.A. 77, 20282032.CrossRefGoogle ScholarPubMed
Utsumi, H., Tunggal, B. D. & Stoffel, W. (1980). Carbon-13 nuclear magnetic resonance studies on the interaction of glycophorin with lecithin in reconstituted vesicles. Biochemistry, Philad. 19, 23852390.CrossRefGoogle ScholarPubMed
Verma, S. P. & Wallach, D. F. H. (1976). Multiple thermotropic state transitions in erythrocyte membranes. A Laser-Raman study of the CH-stretching and acoustical regions. Biochim. biophys. Acta 436, 307318.CrossRefGoogle ScholarPubMed
Verma, S. P. & Wallach, D. F. H. & Sakura, J. D. (1980). Raman analysis of the thermotropic behaviour of lecithin-fatty acid systems and of their interaction with proteolipid apoprotein. Biochemistry, Philad. 19, 574579.CrossRefGoogle ScholarPubMed
Vora, K. R. M., Higuchi, W. I. & Ho, N. F. H. (1972). Analysis of human buccal absorption of drugs by physical model approach. J. pharmac. Sci. 61, 17851791.CrossRefGoogle ScholarPubMed
Wallach, D. F. H., Verma, S. P. & Fookson, J. (1979). Application of laser Raman and infrared spectroscopy to the analysis of membrane structure. Biochim. biophys. Acta 559, 153208.CrossRefGoogle Scholar
Wennersträm, H. & Lindblom, G. (1977). Biological and model membranes studied by nuclear magnetic resonance of spin one half nuclei. Q. Rev. Biophys. 10, 6796.CrossRefGoogle Scholar
White, S. (1980). Small phospholipid vesicles: internal pressure, surface tension, and surface free energy. Proc. natn. Acad. Sci. U.S.A. 77, 40484050.CrossRefGoogle ScholarPubMed
Wilkinson, D. A. & Nagle, J. F. (1981). Dilatometry and calorimetry of saturated phosphatidylethanolamine dispersions. Biochemistry, Philad. 20, 187192.CrossRefGoogle ScholarPubMed
Wolfe, J. (1979). Membrane biophysics: the temperature dependence of some physiological processes, pp. 123127. Ph.D. Thesis, Australian National University, Canberra.Google Scholar
Wolfe, J. & Bagnall, D. J. (1980 a). Arrhenius plots-curves or straight lines? Ann. Bot. 45, 485488.CrossRefGoogle Scholar
Wolfe, J. & Bagnall, D. (1980 b). Statistical tests to decide between straight line segments and curves as suitable fits to Arrhenius plots or other data. In Low Temperature Stress in Crop Plants: The Role of the Membrane (ed. Lyons, J. M., Graham, D. and Raison, J. K.), pp. 527533. New York: Academic Press. See also pp. 327–335.Google Scholar
Wyatt, P. A. H. (1971). The Molecular Basis of Entropy and Chemical Equilibrium. Monographs for Teachers no. 19. London: Royal Institute of Chemistry.Google Scholar
Yancey, P. H. & Somero, G. N. (1978). Temperature dependence of intracellular pH. Its role in the conservation of pyruvate apparent Michaelis constant values of vertebrate lactate dehydrogenases. J. comp. Physiol. B 125, 129134.CrossRefGoogle Scholar