Current and future surveys rely on machine learning classification to obtain large and complete samples of transients. Many of these algorithms are restricted by training samples that contain a limited number of spectroscopically confirmed events. Here, we present the first real-time application of Active Learning to optimise spectroscopic follow-up with the goal of improving training sets of early type Ia supernovae (SNe Ia) classifiers.
Using a photometric classifier for early SN Ia, we apply an Active Learning strategy for follow-up optimisation using the real-time FINK broker processing of the ZTF public stream. We perform follow-up observations at the ANU 2.3m telescope in Australia and obtain 92 spectroscopic classified events that are incorporated in our training set.
We show that our follow-up strategy yields a training set that, with 25% less spectra, improves classification metrics when compared to publicly reported spectra. Our strategy selects in average fainter events and, not only supernovae types, but also microlensing events and flaring stars which are usually not incorporated on training sets.
Our results confirm the effectiveness of active learning strategies to construct optimal training samples for astronomical classifiers. With the Rubin Observatory LSST soon online, we propose improvements to obtain earlier candidates and optimise follow-up. This work paves the way to the deployment of real-time AL follow-up strategies in the era of large surveys.