Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T04:43:55.218Z Has data issue: false hasContentIssue false

Interaction of physical activity and diet: implications for haemostatic factors

Published online by Cambridge University Press:  02 January 2007

Rainer Rauramaa
Affiliation:
Kuopio Research Institute of Exercise Medicine, Haapaniementie 16 FIN-70100 Kuopio, Finland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Regular moderate intensity physical activity and habitual diet providing no more than one third of energy from fats have been recommended for the prevention of atherosclerotic diseases. The background for these guidelines is the key role of plasma lipids. However, the importance of thrombogenesis in acute myocardial infarction has become obvious during the last decade. Hyperlipidaemia and excess of adipose tissue increase platelet aggregability and blood coagulation, and decrease fibrinolysis. Both regular physical activity and dietary fat reduction decrease blood lipids and body fat thereby diminishing the risk of thrombosis. Currently, data on interactions between physical activity and diet on haemostasis are scarce, and the few studies available have not demonstrated additional effects when these two lifestyle modifications have been combined. This paper is restricted only to studies using controlled randomized design. Regular moderate intensity physical activity as well as diet rich in omega-3 fatty acids decrease platelet aggregability. The effects of regular physical activity on plasma fibrinogen remain contradictory, while the impact of diet is even less clear. Plasminogen activator inhibitor-1, a possible link between insulin resistance syndrome and coronary heart disease, may decrease due to physical training or low fat diet. It can be hypothesized that moderation in physical activity and diet carries a more powerful impact on blood coagulation and fibrinolysis than either lifestyle modification alone. Studies focusing on the interactions of regular moderate physical activity and fat-modified diet are needed in efforts to optimize the preventive actions by lifestyle changes.

Type
Research Article
Copyright
Copyright © CABI Publishing 1999

References

1Ross, R. Atherosclerosis — an inflammatory disease. N. Engl. J. Med. 1999; 340: 115–26.CrossRefGoogle ScholarPubMed
2Hassouna, HI. Laboratory evaluation of hemostatic disorders. Hematol. Oncol. Clin. North Am. 1993; 7: 1161–249.CrossRefGoogle ScholarPubMed
3Kazal, LA. Coagulation chemistry. In: Spiegel, HE, ed. Clinical Biochemistry. Comtemporary theories and techniques.(2), 73143. 1982; New York, Academic Press, Inc.CrossRefGoogle Scholar
4Lefkovits, J, Plow, EF, Topol, EJ. Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N. Engl. J. Med. 1995; 332: 1553–59.CrossRefGoogle ScholarPubMed
5Lijnen, HR, Collen, D. Mechanisms of physiological fibrinolysis. Baillieres Clin. Haematol. 1995; 8: 277–90.CrossRefGoogle ScholarPubMed
6Booth, NA, Bennett, B. Fibrinolysis and thrombosis. Baillieres Clin. Haematol. 1994; 7: 559–72.CrossRefGoogle ScholarPubMed
7Tofler, GH, Brezinski, D, Schafer, AI, Czeisler, CA, Rutherford, JD, Willich, SN, Gleason, RE, Williams, GH, Muller, JE. Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N. Engl. J. Med. 1987; 316: 1514–18.CrossRefGoogle ScholarPubMed
8Rauramaa, R, Salonen, JT, Seppänen, K, Salonen, R, Venäläinen, JM, Ihanainen, M, Rissanen, V. Inhibition of platelet aggregability by moderate-intensity physical exercise: a randomized clinical trial in overweight men. Circulation 1986; 74: 939–44.CrossRefGoogle ScholarPubMed
9Wang, JS, Jen, CJ, Chen, HI. Effects of exercise training and deconditioning on platelet function in men. Arterioscler Thromb. Vasc. Biol. 1995; 15: 1668–74.CrossRefGoogle ScholarPubMed
10Wang, JS, Jen, CJ, Chen, HI. Effects of chronic exercise and deconditioning on platelet function in women. J. Appl. Physiol. 1997; 83: 2080–5.CrossRefGoogle ScholarPubMed
11Rauramaa, R, Salonen, JT, Kukkonen-Harjula, K, Seppänen, K, Seppälä, E, Vapaatalo, H, Huttunen, JK. Effects of mild physical exercise on serum lipoproteins and metabolites of arachidonic acid: a controlled randomised trial in middle aged men. Br. Med. J. (Clin. Res. Ed.) 1984; 288: 603–6.CrossRefGoogle ScholarPubMed
12Thorngren, M, Gustafson, A. Effects of 11-week increases in dietary eicosapentaenoic acid on bleeding time, lipids, and platelet aggregation. Lancet 1981; 2: 1190–3.CrossRefGoogle ScholarPubMed
13Mori, TA, Beilin, LJ, Burke, V, Morris, J, Ritchie, J. Interactions between dietary fat, fish, and fish oils and their effects on platelet function in men at risk of cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 1997; 17: 279–86.CrossRefGoogle ScholarPubMed
14Meade, TW, Mellows, S, Brozovic, M, Miller, GJ, Chakrabarti, RR, North, WR, Haines, AP, Stirling, Y, Imeson, JD, Thompson, SG. Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet 1986; 2: 533–7.CrossRefGoogle ScholarPubMed
15Gris, JC, Schved, JF, Feugeas, O, Aguilar-Martinez, P, Arnaud, A, Sanchez, N, Sarlat, C. Impact of smoking, physical training and weight reduction on FVII, PAI-1 and hemostatic markers in sedentary men. Thromb. Haemost. 1990; 64: 516–20.Google ScholarPubMed
16Connelly, JB, Cooper, JA, Meade, TW. Strenuous exercise, plasma fibrinogen, and factor VII activity. Br. Heart J. 1992; 67: 351–4.CrossRefGoogle ScholarPubMed
17van den Burg, PJ, Hospers, JE, van Vliet, M, Mosterd, WL, Huisveld, IA. Unbalanced haemostatic changes following strenuous physical exercise. A study in young sedentary males. Eur. Heart J. 1995; 16: 19952001.CrossRefGoogle ScholarPubMed
18Rankinen, T, Rauramaa, R, Väisänen, S, Halonen, P, Penttilä, I. Blood coagulation and fibrinolytic factors are unchanged by aerobic exercise or fat modified diet. Fibrinolysis 1994; 8: 4853.CrossRefGoogle Scholar
19Miller, GJ, Martin, JC, Webster, J, Wilkes, H, Miller, NE, Wilkinson, WH, Meade, TW. Association between dietary fat intake and plasma factor VII coagulant activity — a predictor of cardiovascular mortality. Atherosclerosis 1986; 60: 269–77.CrossRefGoogle ScholarPubMed
20Miller, GJ, Cruickshank, JK, Ellis, LJ, Thompson, RL, Wilkes, HC, Stirling, Y, Mitropoulos, KA, Allison, JV, Fox, TE. Walker AO Fat consumption and factor VII coagulant activity in middle-aged men. An association between a dietary and thrombogenic coronary risk factor. Atherosclerosis 1989; 78: 1924.CrossRefGoogle ScholarPubMed
21Miller, GJ, Martin, JC, Mitropoulos, KA, Reeves, BE, Thompson, RL, Meade, TW, Cooper, JA, Cruickshank, JK. Plasma factor VII is activated by postprandial triglyceridaemia, irrespective of dietary fat composition. Atherosclerosis 1991; 86: 163–71.CrossRefGoogle ScholarPubMed
22Connelly, JB, Roderick, PJ, Cooper, JA, Meade, TW, Miller, GJ. Positive association between self-reported fatty food consumption and factor VII coagulant activity, a risk factor for coronary heart disease, in 4246 middle-aged men. Thromb. Haemost. 1993; 70: 250–2.Google ScholarPubMed
23Marckmann, P, Sandström, B, Jespersen, J. Dietary effects on circadian fluctuation in human blood coagulation factor VII and fibrinolysis. Atherosclerosis 1993; 101: 225–34.CrossRefGoogle ScholarPubMed
24Salomaa, V, Rasi, V, Pekkanen, J, Jauhiainen, M, Vahtera, E, Pietinen, P, Korhonen, H, Kuulasmaa, K, Ehnholm, C. The effects of saturated fat and n-6 polyunsaturated fat on postprandial lipemia and hemostatic activity. Atherosclerosis 1993; 103: 111.CrossRefGoogle ScholarPubMed
25Bladbjerg, EM, Tholstrup, T, Marckmann, P, Sandström, B, Jespersen, J. Dietary changes in fasting levels of factor VII coagulant activity (FVII: C) are accompanied by changes in factor VII protein and other vitamin K-dependent proteins. Thromb. Haemost. 1995; 73: 239–42.Google ScholarPubMed
26Negri, M, Arigliano, PL, Talamini, G, Carlini, S, Manzato, F, Bonadonna, G. Levels of plasma factor VII and factor VII activated forms as a function of plasma triglyceride levels. Atherosclerosis 1993; 99: 5561.CrossRefGoogle ScholarPubMed
27Silveira, A, Karpe, F, Blombäck, M, Steiner, G, Walldius, G, Hamsten, A. Activation of coagulation factor VII during alimentary lipemia. Arterioscler. Thromb. 1994; 14: 60–9.CrossRefGoogle ScholarPubMed
28Väisänen, S, Rankinen, T, Penttilä, I, Rauramaa, R. Factor VII coagulant activity in relation to serum lipoproteins and dietary fat in middle-aged men. Thromb. Haemost. 1995; 73: 435–8.Google ScholarPubMed
29Marckmann, P, Sandström, B, Jespersen, J. Effects of total fat content and fatty acid composition in diet on factor VII coagulant activity and blood lipids. Atherosclerosis 1990; 80: 227–33.CrossRefGoogle ScholarPubMed
30Marckmann, P, Sandström, B, Jespersen, J. Favorable long-term effect of a low-fat/high-fiber diet on human blood coagulation and fibrinolysis. Arterioscler. Thromb. 1993; 13: 505–11.CrossRefGoogle ScholarPubMed
31Marckmann, P, Sandström, B, Jespersen, J. Fasting blood coagulation and fibrinolysis of young adults unchanged by reduction in dietary fat content. Arterioscler. Thromb. 1992; 12: 201–5.CrossRefGoogle ScholarPubMed
32Mitropoulos, KA, Miller, GJ, Martin, JC, Reeves, BE, Cooper, J. Dietary fat induces changes in factor VII coagulant activity through effects on plasma free stearic acid concentration. Arterioscler. Thromb. 1994; 14: 214–22.CrossRefGoogle ScholarPubMed
33Hoffman, CJ, Miller, RH, Hultin, MB. Correlation of factor VII activity and antigen with cholesterol and triglycerides in healthy young adults. Arterioscler. Thromb. 1992; 12: 267–70.CrossRefGoogle ScholarPubMed
34Marckmann, P, Sandström, B, Jespersen, J. Low-fat, high-fiber diet favorably affects several independent risk markers of ischemic heart disease: observations on blood lipids, coagulation, and fibrinolysis from a trial of middle-aged Danes. Am. J. Clin. Nutr. 1994; 59: 935–9.CrossRefGoogle ScholarPubMed
35Bruckert, E, Carvalho, dS, Giral, P, Soria, C, Chapman, MJ, Caen, J, de Gennes, JL. Interrelationship of plasma triglyceride and coagulant factor VII levels in normotriglyceridemic hypercholesterolemia. Atherosclerosis 1989; 75: 129–34.CrossRefGoogle ScholarPubMed
36Mitropoulos, KA, Miller, GJ, Watts, GF. Durrington PN Lipolysis of triglyceride-rich lipoproteins activates coagulant factor XII: a study in familial lipoprotein-lipase deficiency. Atherosclerosis 1992; 95: 119–25.CrossRefGoogle ScholarPubMed
37Green, F, Kelleher, C, Wilkes, H, Temple, A, Meade, T, Humphries, S. A common genetic polymorphism associated with lower coagulation factor VII levels in healthy individuals. Arterioscler. Thromb. 1991; 11: 540–6.CrossRefGoogle ScholarPubMed
38Humphries, SE, Lane, A, Green, FR, Cooper, J, Miller, GJ. Factor VII coagulant activity and antigen levels in healthy men are determined by interaction between factor VII genotype and plasma triglyceride concentration. Arterioscler. Thromb. 1994; 14: 193–8.CrossRefGoogle ScholarPubMed
39Saha, N, Liu, Y, Heng, CK, Hong, S, Low, PS, Tay, JS. Association of factor VII genotype with plasma factor VII activity and antigen levels in healthy Indian adults and interaction with triglycerides. Arterioscler. Thromb. 1994; 14: 1923–7.CrossRefGoogle ScholarPubMed
40Bernardi, F, Marchetti, G, Pinotti, M, Arcieri, P, Baroncini, C, Papacchini, M, Zepponi, E, Ursicino, N, Chiarotti, F, Mariani, G. Factor VII gene polymorphisms contribute about one third of the factor VII level variation in plasma. Arterioscler. Thromb. Vasc. Biol. 1996; 16: 72–6.CrossRefGoogle ScholarPubMed
41Silveira, A, Green, F, Karpe, F, Blombäck, M, Humphries, S, Hamsten, A. Elevated levels of factor VII activity in the postprandial state: effect of the factor VII Arg-Gln polymorphism. Thromb. Haemost. 1994; 72: 734–9.Google ScholarPubMed
42Pankow, JS, Folsom, AR, Shahar, E, Tsai, MY, Jeffery, RW, Wing, RR. Weight-loss induced changes in plasma factor VII coagulant activity and relation to the factor VII Arg/Gln353 polymorphism in moderately obese adults. Thromb. Haemost. 1998; 79: 784–9.Google Scholar
43Benderly, M, Graff, E, Reicher-Reiss, H, Behar, S, Brunner, D, Goldbourt, U. Fibrinogen is a predictor of mortality in coronary heart disease patients. The Bezafibrate Infarction Prevention (BIP) Study Group. Arterioscler. Thromb. Vasc. Biol. 1996; 16: 351–6.CrossRefGoogle Scholar
44Thompson, SG, Kienast, J, Pyke, SD, Haverkate, F, van de Loo, JC. Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group N. Engl. J. Med. 1995; 332: 635–41.CrossRefGoogle ScholarPubMed
45Väisänen, S. Associations of physical activity, fibrinogen genotypes and blood lipoproteins with thrombogenic factors in humans. Kuopio University Publications D. Medical Sciences 131. Doctoral Dissertation. 1997: Kuopio University, Kuopio, Finland.Google Scholar
46Stratton, JR, Chandler, WL, Schwartz, RS, Cerqueira, MD, Levy, WC, Kahn, SE, Larson, VG, Cain, KC, Beard, JC, Abrass, IB. Effects of physical conditioning on fibrinolytic variables and fibrinogen in young and old healthy adults. Circulation 1991; 83: 1692–7.CrossRefGoogle Scholar
47Vanninen, E, Laitinen, J, Uusitupa, M. Physical activity and fibrinogen concentration in newly diagnosed NIDDM. Diabetes Care 1994; 17: 1031–8.CrossRefGoogle ScholarPubMed
48Montgomery, HE, Clarkson, P, Nwose, OM, Mikailidis, DP, Jagroop, IA, Dollery, C, Moult, J, Benhizia, F, Deanfield, J, Jubb, M, World, M, McEwan, JR, Winder, A, Humphries, S. The acute rise in plasma fibrinogen concentration with exercise is influenced by the G-453-A polymorphism of the beta-fibrinogen gene. Arterioscler. Thromb. Vasc. Biol. 1996; 16: 386–91.CrossRefGoogle ScholarPubMed
49Svendsen, OL, Hassager, C, Christiansen, C, Nielsen, JD, Winther, K. Plasminogen activator inhibitor-1, tissue-type plasminogen activator, and fibrinogen: Effect of dieting with or without exercise in overweight postmenopausal women. Arterioscler. Thromb. Vasc. Biol. 1996; 16: 381–5.CrossRefGoogle ScholarPubMed
50Schuit, AJ, Schouten, EG, Kluft, C de Maat, M, Menheere, PP, Kok, FJ. Effect of strenuous exercise on fibrinogen and fibrinolysis in healthy elderly men and women. Thromb. Haemost. 1997; 78: 845–51.Google ScholarPubMed
51Rauramaa, R, Väisänen, S, Nissinen, A, Rankinen, T, Penttilä, I, Saarikoski, S, Tuomilehto, J, Gagnon, J, Perusse, L, Bouchard, C. Physical activity, fibrinogen plasma level and gene polymorphisms in postmenopausal women. Thromb. Haemost. 1997; 78: 840–4.Google ScholarPubMed
52Rauramaa, R, Väisänen, S, Penttilä, I, Rankinen, T, Inverse relationship between dietary starch intake and plasma fibrinogen in middle-aged men. Nut. Metab. Cardiovasc. Dis. 1994; 4: 192–6.Google Scholar
53Miller, GJ. Effects of diet composition on coagulation pathways. Am. J. Clin. Nutr. 1998; 67: 542S–5S.CrossRefGoogle ScholarPubMed
54Hamsten, A, de Faire, U, Walldius, G, Dahlen, G, Szamosi, A, Landou, C, Blombäck, M, Wiman, B. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 1987; 2: 39.CrossRefGoogle ScholarPubMed
55Juhan-Vague, I, Pyke, SD, Alessi, MC, Jespersen, J, Haverkate, F, Thompson, SG. Fibrinolytic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. ECAT Study Group. European Concerted Action on Thrombosis and Disabilities. Circulation 1996; 94: 2057–63.CrossRefGoogle ScholarPubMed
56Salomaa, V, Stinson, V, Kark, JD, Folsom, AR, Davis, CE, Wu, KK. Association of fibrinolytic parameters with early atherosclerosis. The ARIC Study. Atherosclerosis Risk in Communities Study. Circulation 1995; 91: 284–90.CrossRefGoogle ScholarPubMed
57McGill, JB, Schneider, DJ, Arfken, CL, Lucore, CL, Sobel, BE. Factors responsible for impaired fibrinolysis in obese subjects and NIDDM patients. Diabetes 1994; 43: 104–9.CrossRefGoogle ScholarPubMed
58Avellone, G, Di Garbo, V, Cordova, R, Raneli, G, De Simone, R, Bompiani, G. Coagulation, fibrinolysis and haemorheology in premenopausal obese women with different body fat distribution. Thromb. Res. 1994; 75: 223–31.CrossRefGoogle ScholarPubMed
59Meilahn, EN, Cauley, JA, Tracy, RP, Macy, EO, Gutai, JP, Kuller, LH. Association of sex hormones and adiposity with plasma levels of fibrinogen and PAI-1 in postmenopausal women. Am. J. Epidemiol. 1996; 143: 159–66.CrossRefGoogle ScholarPubMed
60Samad, F, Loskutoff, DJ. The fat mouse: a powerful genetic model to study elevated plasminogen activator inhibitor 1 in obesity/NIDDM. Thromb. Haemost. 1997; 78: 652–5.Google Scholar
61Lundgren, CH, Brown, SL, Nordt, TK, Sobel, BE, Fujii, S. Elaboration of type-1 plasminogen activator inhibitor from adipocytes. A potential pathogenetic link between obesity and cardiovascular disease. Circulation 1996; 93: 106–10.CrossRefGoogle ScholarPubMed
62Samad, F, Loskutoff, DJ. Tissue distribution and regulation of plasminogen activator inhibitor-1 in obese mice. Mol. Med. 1996; 2: 568–82.CrossRefGoogle ScholarPubMed
63Samad, F, Yamamoto, K, Pandey, M, Loskutoff, DJ. Elevated expression of transforming growth factor-beta in adipose tissue from obese mice. Mol. Med. 1997; 3: 3748.CrossRefGoogle ScholarPubMed
64Weinstock, C, König, D, Harnischmacher, R, Keul, J, Berg, A, Northoff, H. Effect of exhaustive exercise stress on the cytokine response. Med. Sci. Sports Exerc. 1997; 29: 345–54.CrossRefGoogle ScholarPubMed
65Rankinen, T, Väisänen, S, Penttilä, I, Rauramaa, R. Acute dynamic exercise increases fibrinolytic activity. Thromb. Haemost. 1995; 73: 281–6.Google ScholarPubMed
66Chandler, WL, Levy, WC, Stratton, JR. The circulatory regulation of TPA and UPA secretion, clearance, and inhibition during exercise and during the infusion of isoproterenol and phenylephrine. Circulation 1995; 92: 2984–94.CrossRefGoogle ScholarPubMed
67van den Burg, PJ, Hospers, JE, van Vliet, M, Mosterd, WL, Bouma, BN, Huisveld, IA. Effect of endurance training and seasonal fluctuation on coagulation and fibrinolysis in young sedentary men. J. Appl. Physiol. 1997; 82: 613–20.CrossRefGoogle ScholarPubMed
68Chandler, WL, Schwartz, RS, Stratton, JR, Vitiello, MV. Effects of endurance training on the circadian rhythm of fibrinolysis in men and women. Med. Sci. Sports Exerc. 1996; 28: 647–55.CrossRefGoogle ScholarPubMed
69Juhan-Vague, I, Alessi, MC, Raccah, D, Aillaud, MF, Billerey, M, Ansaldi, J, Philip-Joet, C, Vague, P. Daytime fluctuations of plasminogen activator inhibitor 1 (PAI-1) in populations with high PAI-1 levels. Thromb. Haemost. 1992; 67: 7682.Google ScholarPubMed
70Kluft, C, Verheijen, JH. Leiden fibrinolysis working party: blood collection and handling procedures for assessment of tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1). Fibrinolysis 1990; 4(suppl. 2): 155–61.CrossRefGoogle Scholar
71Eriksson, P, Kallin, B, van't Hooft, FM, Båvenholm, P, Hamsten, A. Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. Proc. Natl. Acad. Sci. USA 1995; 92: 1851–5.CrossRefGoogle ScholarPubMed
72Margaglione, M, Cappucci, G, Colaizzo, D, Giuliani, N, Vecchione, G, Grandone, E, Pennelli, O, Di Minno, G. The PAI-1 gene locus 4G/5G polymorphism is associated with a family history of coronary artery disease Arterioscler. Thromb. Vasc. Biol. 1998; 18: 152–6.CrossRefGoogle Scholar
73Panahloo, A, Mohamed-Ali, V, Lane, A, Green, F, Humphries, SE, Yudkin, JS. Determinants of plasminogen activator inhibitor 1 activity in treated NIDDM and its relation to a polymorphism in the plasminogen activator inhibitor 1 gene. Diabetes 1995; 44: 3742.CrossRefGoogle ScholarPubMed
74Mansfield, MW, Stickland, MH, Grant, PJ. Environmental and genetic factors in relation to elevated circulating levels of plasminogen activator inhibitor-1 in Caucasian patients with non-insulin-dependent diabetes mellitus. Thromb. Haemost. 1995; 74: 842–7.Google ScholarPubMed
75Ossei-Gerning, N, Mansfield, MW, Stickland, MH, Wilson, IJ, Grant, PJ. Plasminogen activator inhibitor-1 promoter 4G/5G genotype and plasma levels in relation to a history of myocardial infarction in patients characterized by coronary angiography. Arterioscler Thromb. Vasc. Biol. 1997; 17: 33–7.CrossRefGoogle ScholarPubMed
76Lopez-Segura, F, Velasco, F, Lopez-Miranda, J, Castro, P, Lopez-Pedrera, R, Blanco, A, Jimenez-Pereperez, J, Torres, A, Trujillo, J, Ordovas, JM, Pérez-Jiménez, F. Monounsaturated fatty acid-enriched diet decreases plasma plasminogen activator inhibitor type 1. Arterioscler. Thromb. Vasc. Biol. 1996; 16: 82–8.CrossRefGoogle ScholarPubMed
77Niskanen, L, Schwab, US, Sarkkinen, ES, Krusius, T, Vahtera, E, Uusitupa, MI. Effects of dietary fat modification on fibrinogen, factor VII, and plasminogen activator inhibitor-1 activity in subjects with impaired glucose tolerance. Metabolism 1997; 46: 666–72.CrossRefGoogle ScholarPubMed
78Väisänen, SB, Humphries, SE, Luong, LA, Penttilä, I, Bouchard, C, Rauramaa, R. Regular Exercise, Plasminogen Activator Inhibitor-1 (PAI-1) Activity and the 4G/5G Promoter Polymorphism in the PAI-1 Gene. Thromb. Haemost. 1999, in press.Google ScholarPubMed
79Ågren, JJ, Pekkarinen, H, Litmanen, H, Hänninen, O. Fish diet and physical fitness in relation to membrane and serum lipids, prostanoid metabolism and platelet aggregation in female students. Eur. J. Appl. Physiol. 1991; 63: 393–8.CrossRefGoogle ScholarPubMed
80Dunstan, DW, Mori, TA, Puddey, IB, Beilin, LJ, Burke, V, Morton, AR, Stanton, KG. A randomised, controlled study of the effects of aerobic exercise and dietary fish on coagulation and fibrinolytic factors in type 2 diabetics. Thromb. Haemost. 1999; 81: 367–72.Google ScholarPubMed