No CrossRef data available.
Article contents
XXVIII.—Hybrid Sterility in Artificially Produced Recombinants between Drosophila melanogaster and D. simulans
Published online by Cambridge University Press: 11 June 2012
Extract
Drosophila melanogaster and D. simulans constitute one of those cases in which two almost identical phenotypes result from different genotypes. In particular, the histology of gametogenesis shows no detectable difference between the two species, nevertheless, the development of the gonads in their hybrids is so upset that invariably sterility results. In these hybrids the germ cells never go beyond the stage of oogonia or spermatogonia.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences , Volume 61 , Issue 4 , 1943 , pp. 385 - 397
- Copyright
- Copyright © Royal Society of Edinburgh 1943
References
References to Literature
Darlington, C. D., and La Cour, L. F., 1942. “The handling of Chromosomes,” London, Allen & Unwin.Google Scholar
Guyenot, E., and Naville, A., 1929. “Les chromosomes et la reduction chromatique chez Drosophila melanogaster,” Cellule, vol. xix, pp. 25–82.Google Scholar
Hindle, E., and Pontecorvo, G., 1942. “Mitotic divisions following meiosis in Pediculus corporis males,” Nature, vol. cxlix, p. 668.CrossRefGoogle Scholar
Horton, Ira H., 1939. “A comparison of the salivary gland chromosomes of Drosophila melanogaster and Drosophila simulans,“ Genet., vol. xxiv, pp. 234–244.CrossRefGoogle Scholar
Kerkis, J., 1933. “Development of gonads in hybrids between Drosophila melanogaster and Drosophila simulans,” Journ. Exp. Zool., vol. lxvi, pp. 477–502.Google Scholar
Mather, K., 1941. “Variation and selection of polygenic characters,” Journ. Genet., vol. xli, pp. 159–193.CrossRefGoogle Scholar
Mather, K., 1942. “The balance of polygenic combinations,” Journ. Genet., vol. xliii, pp. 309–336.CrossRefGoogle Scholar
Mather, K., and Wigan, L. G., 1942. “The selection of invisible mutations,” Proc. Roy. Soc., B, vol. cxxxi, pp. 50–64.Google Scholar
Muller, H. J., 1939. “Reversibility in evolution from the standpoint of genetics,” Biol. Rev., vol. xiv, pp. 261–280.CrossRefGoogle Scholar
Muller, H. J., 1942. “Isolating mechanisms, evolution and temperature,” Biological Symposia, vol. vi, pp. 71–125.Google Scholar
Muller, H. J., and Pontecorvo, G., 1940. “Recombinants between Drosophila species the F1 hybrids of which are sterile,” Nature, vol. cxlvi, p. 199.CrossRefGoogle Scholar
Muller, H. J., 1941. “Recessive genes causing interspecific sterility and other disharmonies between Drosophila melanogaster and simulans,” Rec. Genet. Soc. Amer., vol. x, p. 157 (Abstract).Google Scholar
Neuhaus, M. E., 1939. “A cytogenetic study of the Y chromosome of Drosophila melanogaster,” Journ. Genet., vol. xxvii, pp. 229–254.CrossRefGoogle Scholar
Patau, K., 1935. “Chromosomenmorphologie bei Drosophila melanogaster und Drosophila simulans und ihre genetische Bedeutung,” Naturwissenschaften, vol. xxiii, pp. 537–543.CrossRefGoogle Scholar
Pontecorvo, G., 1942. “Viability interactions between chromosomes of Drosophila melanogaster and Drosophila simulans,” Journ. Genet. (in the press).CrossRefGoogle Scholar
Schultz, J., and Dobzhansky, Th., 1933. ”Triploid hybrids between Drosophila melanogaster and D. simulans,” Journ. Exp. Zool., vol. lxv, pp. 73–82.CrossRefGoogle Scholar
Slizynski, B. M., 1941. “The structural differentiation of chromosome IV of Drosophila simulans and its behaviour in melanogaster genotype,” Proc. Roy. Soc. Edin., B, vol. lxi, pp. 95–106.Google Scholar
Sturtevant, A. H., 1929. “The genetics of Drosophila simulans,” Publ. Carneg. Instn., no. 399, pp. 1–62.Google Scholar
Wigan, L. G., 1941. “Polygenic variation in wild Drosophila melanogaster” Nature, vol. cxlviii, p. 373.CrossRefGoogle Scholar