Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T06:32:47.568Z Has data issue: false hasContentIssue false

XXIX.—The Effects of Radiation on Pollen Grain Development, Differentiation, and Germination

Published online by Cambridge University Press:  11 June 2012

P. C. Koller
Affiliation:
Institute of Animal Genetics, University of Edinburgh.
Get access

Extract

Tradescantia pollen grains are excellent material for the analysis of X-ray effects. The influence of radiation on cell development, nuclear differentiation, as well as on chromosome structure can be studied. Extensive quantitative analyses, which primarily concern the mechanism of chromosome breaks and reunions induced by radiation, have already been made (Riley, 1936; Sax, 1938, 1940, 1941; Fabergé, 1940). The present paper contains data which show the effects of radiation on cell development, chromosome behaviour, nuclear differentiation, and pollen germination. It is expected that the data obtained will throw some light on the intricate mechanism present within the cell and show that the governing centre of this mechanism is the nucleus.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1943

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Alberti, W., and Politzer, G., 1924. “Über den Einfluss der Röntgenstrahlen auf die Zellteilung,” Arch. mikr. Anat., vol. c, pp. 83109.Google Scholar
Anderson, E., and Sax, K., 1934. “A cytological analysis of self-sterility in TradescantiaBot. Gaz., vol. xcv, pp. 609621.CrossRefGoogle Scholar
Carlson, J. G., 1941. “Effects of X-radiation on grasshopper chromosomes,” Cold Spr. Harb. Symp., vol. ix, pp. 104112.Google Scholar
Caspersson, T., 1941. “Studien über den Eiweissumsatz der Zelle,” Naturwiss., vol. lxxx, pp. 3343.CrossRefGoogle Scholar
Darlington, C. H., 1937. Recent advances in cytology, London: J. and A. Churchhill, Ltd., 2nd ed. 671 pp.Google Scholar
Darlington, C. H., 1942. “Chromosome chemistry and gene action,” Nature, vol. cxlix, p. 66.CrossRefGoogle Scholar
Darlington, C. H., and Upcott, M. B., 1941. “The activity of inert chromosomes in Zea maysJourn. Genet., vol. xl, pp. 275296.CrossRefGoogle Scholar
Eigsti, O. T., 1940. “The effects of colchicine upon the division of the generative cell in the Polygonatum, Tradescantia, and LiliumAmer. Journ. Bot., vol. xxvii, pp. 512524.CrossRefGoogle Scholar
Fabergé, A. C., 1940. “The experiments on chromosome fragmentation in Tradescantia by X-rays,” Journ. Genet., vol. xxxix, pp. 229248.CrossRefGoogle Scholar
Marquardt, H., 1938. “Die Röntgenpathologie der Mitose,” Zeits. Bot., vol. xxxii, pp. 401482.Google Scholar
Mather, K., 1937. “The experimental determination of the time of chromosome doubling,” Proc. Roy. Soc. Lond., vol. cxxiv, pp. 97106.Google Scholar
Muller, H. J., 1941. “Induced mutations in DrosophilaCold Spr. Harb. Symp., vol. ix, pp. 151167.CrossRefGoogle Scholar
Newcombe, H. B., 1942. “The action of X-rays on the cell. I. The chromosome variable,” Journ. Genet., vol. xliii, pp. 145171.CrossRefGoogle Scholar
Pekarek, J., 1927. “Über den Einfluss der Röntgenstrahlen auf die Kernund Zellteilung bei Wurzelspitzen von Vicia faba,” Planta, vol. iv, pp. 299357.CrossRefGoogle Scholar
Poddubnaja, A. V., 1936. “Beobachtungen über die Keimung des Pollens einiger Pflanzen auf Künstlichen Nährboden,” Planta, vol. xxv, pp. 502529.CrossRefGoogle Scholar
Riley, H. P., 1936. “The effects of X-rays on the chromosomes of Tradescantia gigantea,” Cytologia, vol. vii, pp. 131142.CrossRefGoogle Scholar
Sax, K., 1935. “The effect of temperature on nuclear differentiation in microspore development,” Journ. Arnold Arbor., vol. xvi, pp. 301310.CrossRefGoogle Scholar
Sax, K., 1937. “The effect of variations in temperature on nuclear and cell division in Tradescantia,” Amer. Journ. Bot., vol. xxiv, pp. 218225.CrossRefGoogle Scholar
Sax, K., 1938. “Chromosome aberrations induced by X-rays,” Genetics, vol. xxiii, pp. 494516.CrossRefGoogle Scholar
Sax, K., 1939. “The time factor in X-ray production of chromosome aberrations,” Proc. Nat. Acad. Sci. Wash., vol. xxv, pp. 225233.CrossRefGoogle Scholar
Sax, K., 1940. “Analysis of X-ray-induced chromosomal aberrations in Tradescantia,” Genetics, vol. xxv, pp. 4168.CrossRefGoogle Scholar
Sax, K., 1941. “Types and frequencies of chromosomal aberrations induced by X-rays,” Cold Spr. Harb. Symp., vol. ix, pp. 93103.CrossRefGoogle Scholar
Sax, K., and Edmonds, H. W., 1933. “Development of the male gametophyte in Tradescantia,” Bot. Gaz., vol. xcv, pp. 153163.Google Scholar
Sax, K., and Hustedt, L., 1936. “Polarity and differentiation in microspore development,” Amer. Journ. Bot., vol. xxiii, pp. 606609.CrossRefGoogle Scholar
Sax, K., and Swanson, C. P., 1941. “Differential sensitivity of cells to X-rays,” Amer. Journ. Bot., vol. xxviii, pp. 5259.Google Scholar
Shinke, N., 1939. “Experimental studies in cell nuclei,” Mem. Coll. Sci. Kyoto, vol. xv, pp. 1126.Google Scholar
Strangeways, T. S. P., and Hopwood, F. L., 1926. “The effect of X-rays upon mitotic cell division in tissue cultures in vitro,” Proc. Roy. Soc. Lond., B, vol. c, pp. 283296.Google Scholar
Suita, N., 1937. “Studies on the male gametophyte in Angiosperms. II. Differentiation and behaviour of the vegetative and generative elements in the pollen grains of Crinum,” Cytologia, Jubilee Vol., pp. 920933.CrossRefGoogle Scholar
Swanson, C. P., 1940 a. “The use of acenaphtene in pollen tube technique,” Stain Tech., vol. xv, pp. 4952.CrossRefGoogle Scholar
Swanson, C. P., 1940 b. “A comparison of chromosomal aberrations induced by X-ray and ultraviolet radiation,” Proc. Nat. Acad. Sci. Wash., vol. xxvi, pp. 366372.Google Scholar
White, M. T. D., 1935. “The effect of X-rays on mitosis in the spermatogonial divisions of Locusta migratoria,” Proc. Roy. Soc. Lond., B, vol. cxix, pp. 6184.Google Scholar