Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T23:19:25.618Z Has data issue: false hasContentIssue false

On the boundary value problems of electro- and magnetostatics

Published online by Cambridge University Press:  14 November 2011

Rainer Picard
Affiliation:
Department of Applied Mathematics, University of Bonn, Wegelerstraße 10, D-5300 Bonn, Federal, Republic of Germany

Synopsis

The classically well-known relation between the number of linearly independent solutions of the electro- and magnetostatic boundary value problems (harmonic Dirichlet and Neumann vector fields) and topological characteristics (genus and number of boundaries) of the underlying domain in 3-dimensional euclidean space is investigated in the framework of Hilbert space theory. It can be shown that this connection is still valid for a large class of domains with not necessarily smooth boundaries (segment property). As an application the inhomogeneous boundary value problems of electro- and magnetostatics are discussed.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Adams, R. A.. Sobolev Spaces (New York: Academic Press, 1975).Google Scholar
2Agmon, S.. Lectures on Elliptic Boundary Value Problems (Princeton: Van Nostrand, 1965).Google Scholar
3Aronszajn, N., Krzywicki, A. and Szarski, J.. A unique continuation theorem for exterior differential forms on Riemannian manifolds. Ark. Mat. 4 (1961), 417453.CrossRefGoogle Scholar
4Duff, G. F. D.. Differential forms in manifolds with boundary. Ann. of Math. 56 (1952), 115127.Google Scholar
5Duff, G. F. D. and Spencer., D. C.. Harmonic tensors on Riemannian manifolds with boundary. Ann. of Math. 56 (1952), 128156.CrossRefGoogle Scholar
6Friedrichs., K. O.. Differential forms on Riemannian manifolds. Comm. Pure Appl. Math. 8 (1955), 551590.CrossRefGoogle Scholar
7Gaffney, M.. The harmonic operator for exterior differential forms. Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 4850.Google Scholar
8König, H. and Loch, H.. Eine abstrakte Theorie der Kegel- und Segmentbedingungen. Math. Meth. Appl. Sci. 2 (1981), 518530.CrossRefGoogle Scholar
9Leis, R.. Rand- und Eigenwertaufgaben in der Theorie elektromagnetischer Schwingungen. Methoden und Verfarhren der mathematischen Physik 11, 85116 (Mannheim: B. I. Verlag, 1974).Google Scholar
10Meyers, N. G... Integral inequalities of Poincare and Wirtinger type. Arch. Rational Mech. Anal. 68 (1978), 113120.CrossRefGoogle Scholar
11Morrey, C. B... a variational method in the theory of harmonic integrals II. Amer. J. Math. 78 (1956), 137170.Google Scholar
12Picard, R.. Potentialtheorie auf Riemannschen Mannigfaltigkeiten mit nicht-glattem Rand. Sonderforschungsbereich 72, ‘Approximation and Optimierung’, preprint no. 360, Bonn (1980).Google Scholar
13Picard, R.. Randwertaufgaben der verallgemeinerten Potentialtheorie. Math. Mech. Appl. Sci. 3 (1981), 213223.CrossRefGoogle Scholar
14Piepenbrink, J.. Integral inequalities and theorems of Liouville type. J. Math. Anal. Appl. 26 (1969), 630639.Google Scholar
15Rinkens, H. D... Zur Theorie der Maxwellschen Gleichungen in der Ebene. Bonner Math. Schriften 38 (1969).Google Scholar
16Spivak, M.. Calculus on Manifolds (New York: Benjamin, 1965).Google Scholar
17Steinbach, E.. Singuläre Lösungen zu Randwertproblemen der Maxwellschen Gleichungen (Diplomarbeit, Univ. Bonn, 1970).Google Scholar
18Weber, C.. A local compactness Theorem for Maxwell's equations. Math. Meth. Appl. Sci. 2 (1980), 1225.Google Scholar
19Week, N.. Maxwell's boundary value problem on Riemannian manifolds with nonsmooth boundaries. X Math. Anal. Appl. 46 (1974), 410437.CrossRefGoogle Scholar
20Werner, P.. Über das Verhalten elektromagnetischer Felder für kleine Frequenzen in mehrfach zusammenhängenden Gebieten I, Innenraumprobleme. J. Reine Angew. Math. 278/279 (1975), 365397.Google Scholar
21Martensen, E.. Potentialtheorie (Stuttgart: Teubner, 1968).Google Scholar