Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T02:33:15.206Z Has data issue: false hasContentIssue false

On contracted semigroup rings

Published online by Cambridge University Press:  14 November 2011

W. D. Munn
Affiliation:
Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland, U.K.

Synopsis

Sufficient conditions are given for a contracted semigroup ring, in which the two-sided ideals have a certain property, to be (a) semiprime, (b) semiprimitive, (c) prime, (d) primitive. The results are applied to the contracted semigroup rings of inverse semigroups, where they provide new proofs of theorems of Domanov.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Connell, I. G.. On the group ring. Canad. J. Math. 15 (1963), 650685.CrossRefGoogle Scholar
2Domanov, O. I.. Semisimplicity and identities of inverse semigroup algebras. Rings and Modules. Mat. Issled. 38 (1976), 123137.Google Scholar
3Howie, J. M.. An introduction to semigroup theory (London: Academic Press, 1976).Google Scholar
4McCoy, N. H.. The theory of rings (New York: Macmillan, 1964).Google Scholar
5Munn, W. D.. The idempotent-separating congruences on a regular O-bisimple semigroup. Proc. Edinburgh Math. Soc. (2) 15 (1967) 233240.CrossRefGoogle Scholar
6Munn, W. D.. Inverse semigroup algebxas. Group and semigroup rings, Proc. Int. Conf. Johannesburg, 1985, ed. Karpilovsky, G., pp. 197223. (Amsterdam: North-Holland, 1986).Google Scholar
7Munn, W. D.. Nil ideals in inverse semigroup algebras. J. London Math. Soc. (2) 35 (1987), 433438.CrossRefGoogle Scholar
8Munn, W. D.. Two examples of inverse semigroup algebras. Semigroup Forum 35 (1987), 127134.CrossRefGoogle Scholar
9Munn, W. D.. A class of contracted inverse semigroup rings. Proc. Roy. Soc. Edinburgh Sect. A 107 (1987), 175196.CrossRefGoogle Scholar
10Nivat, M. and Perrot, J.-F.. Une généralisation du monoïide bicyclique. C.R. Acad. Sci. Paris (Sér. A) 271 (1970), 824827.Google Scholar
11Passman, D. S.. The algebraic structure of group rings (New York: Wiley, 1977).Google Scholar
12Ponizovskiĭ, I. S.. An example of a semiprimitive semigroup algebra. Semigroup Forum 26 (1983), 225228.CrossRefGoogle Scholar
13Teply, M. L., Turman, E. G. and Quesada, A.. On semisimple semigroup rings. Proc. Amer. Math. Soc. 79 (1980), 157163.CrossRefGoogle Scholar