Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-20T16:27:30.331Z Has data issue: false hasContentIssue false

The mod 2 homology of the space of loops on the exceptional Lie group

Published online by Cambridge University Press:  14 November 2011

Akira Kono
Affiliation:
Department of Mathematics, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 612, Japan
Kazumuto Kozima
Affiliation:
Department of Mathematics, Kyoto University of Education, 1 Fukakusa-Fujinomori-cho, Fushimi-ku, Kyoto 612, Japan

Synopsis

The Hopf algebra structure of H*G, F2) and the action of the dual Steenrod algebra are completely and explicitly determined when G isone of the connected, simply connected, exceptional, simple Lie groups. The approach is homological, using connected coverings and spectral sequences.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Araki, S.. Cohomology modulo 2 of the compact exceptional groups. J. Math. Osaka Univ. 12 (1961), 4365.Google Scholar
2Araki, S. and Shikata, Y.. Cohomology mod 2 of the compact exceptional group E 8. Proc. Japan Acad. 57 (1961), 619622.Google Scholar
3Borel, A.. Sur l'homologie et la cohomologie des groupes de Lie compacts connexes. Amer. J. Math. 76 (1954), 273342.CrossRefGoogle Scholar
4Bott, R.. An application of the Morse theory to the topology of Lie groups. Bull. Soc. Math. France 84 (1956), 251281.CrossRefGoogle Scholar
5Bott, R.. The space of loop on Lie groups. Michigan Math. J. 5 (1955), 3561.Google Scholar
6Browder, W.. On differential Hopf algebras. Trans. Amer. Math. Soc. 107 (1963), 153176.CrossRefGoogle Scholar
7Clarke, F., On the K-theory of the loop space on a Lie group. Proc. Camb. Phil. Soc. 76 (1974), 120.CrossRefGoogle Scholar
8Kachi, H.. Homotopy groups of Lie groups E 6, E 7 and E 8. Nagoya Math. J. 32 (1968), 109139.CrossRefGoogle Scholar
9Kono, A.. Hopf algebra structure and cohomology operation of the mod 2 cohomology of exceptional Lie groups. Japan. J. Math. (N.S.) 3 (1977), 4955.CrossRefGoogle Scholar
10Milnor, J. and Moore, J. C.. On the structure of Hopf algebra. Ann. of Math. (2) 81 (1965), 211264.Google Scholar
11Ohshita, A.. On H-spaces with the mod 2 cohomology isomorphic to H * (Spin(n)). J. Math. Kyoto Univ. (to appear).Google Scholar
12Rector, D. L.. Steenrod operations in the Eilenberg-Moore spectral sequence. Comment. Math. Helv. 45 (1970), 540552.CrossRefGoogle Scholar
13Rothenberg, M. and Steenrod, N.. The cohomology of the classifying spaces of H-spaces. Bull. Amer. Math. Soc. (N.S.) 71 (1961), 872875.CrossRefGoogle Scholar
14Serre, J. P.. Groupes d'homotopie et classes de groupes abeliens. Ann. of Math. (2) 58 (1953), 258294.CrossRefGoogle Scholar
15Thomas, E.. Exceptional Lie groups and Steenrod squares. Michigan Math. J. 11 (1964), 151156.CrossRefGoogle Scholar
16Toda, H.. Composition Methods in Homotopy Groups of Spheres. Ann. of Math. Studies 49 (Princeton, NJ: Princeton University Press, 1962).Google Scholar
17Watanabe, T.. Cohomology operations in the loop space of the compact exceptional group F 4. Osaka J. Math. 16 (1979), 471478.Google Scholar