Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T23:13:04.320Z Has data issue: false hasContentIssue false

Mean-value theorems for Riemannian manifolds

Published online by Cambridge University Press:  14 November 2011

A. Gray
Affiliation:
Department of Mathematics, University of Maryland, College Park, Md 20742, U.S.A.
T. J. Willmore
Affiliation:
Department of Mathematics, University of Durham, Durham

Synopsis

Let Mm (r, f) denote the mean-value of a real-valued integrable function f over a geodesic sphere with centre m and radius r in an n-dimensional Riemannian manifold M. We obtain an expansion of Mm (r, f) in powers of r, thereby generalizing Pizzetti's formula valid in euclidean space. From this expansion we prove that the property

for every harmonic function near m, characterizes Einstein spaces. We define super-Einstein spaces and prove that they are characterized by the property

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ascoli, G.. Sopra i sistemi lineari isotropi e le loro proprietà integrali. Pont. Acad. Sci. Comment. 7 (1943), 207281.Google Scholar
2Ascoli, G.. Nuclei istropi e loro autofunzioni. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 1 (1946), 11671172.Google Scholar
3Ascoli, G.. L'isotropia analitica e le sue applicazioni. Rend. Sem. Mat. Fis. Milano 20 (1949), 1325.CrossRefGoogle Scholar
4Besse, A. L.. Manifolds all of whose geodesies are closed. Ergebnisse der Mathematik 93 (Berlin: Springer, 1978).Google Scholar
5Berger, M., Gauduchon, P. and Mazet, E.. Le spectre d'une variété riemanienne. Lecture Notes in Mathematics 194 (Berlin: Springer, 1971).Google Scholar
6Berenstein, C. A. and Zalcman, L.. Pompeiu's problem on spaces of constant curvature. J. Analyse Math. 30 (1976), 113130.CrossRefGoogle Scholar
7Brezin, F. A. and Gelfand, I. M.. Some remarks on the theory of spherical functions on symmetric Riemannian manifolds. Trudy Moskov. Mat. Obšč. 5 (1956), 311351.Google Scholar
8Cartan, E.. Géométrie des espaces de Riemann (Paris: Gauthier-Villars, 1928).Google Scholar
9Carpenter, P., Gray, A. and Willmore, T. J., The curvature of Einstein symmetric spaces. Quart. J. Math. Oxford 33 (1982), 4564.CrossRefGoogle Scholar
10Courant, R. and Hilbert, D.. Methods of mathematical physics vol. 2 (New York: Interscience, 1962).Google Scholar
11Copson, E. T. and Ruse, H. S., Harmonic Riemannian spaces. Proc. Roy. Soc. Edinburgh 60 (1940), 117133.CrossRefGoogle Scholar
12Desertine, J. C.. Expressions nouvelles de la formule de Gauss-Bonnet en dimension 4 et 6. C. R. Acad. Sci. Paris 273 (1971), 164167.Google Scholar
13Eisenhart, L. P.. Riemannian geometry (Princeton, N.J.: Princeton University Press, 1925).Google Scholar
14Feller, W., Über die Lösungen der linearen partiellen Differentialgleichungen zweiter Ordnung vom elliptischen Typus. Math. Ann. 102 (1930), 633649.CrossRefGoogle Scholar
15Friedman, A.. Function-theoretic characterization of Einstein spaces and harmonic spaces. Trans. Amer. Math. Soc. 101 (1961), 240258.CrossRefGoogle Scholar
16Fusaro, B. A.. Spherical means in harmonic spaces. J. Math. Mech. 18 (1968/1969), 603606.Google Scholar
17Gelfand, I. M.. Spherical functions in symmetric Riemannian spaces. C. R. (Doklady) Akad. Sci. URSS (N.S.) 70 (1950), 58.Google Scholar
18Godement, R.. Une genéralization du théorème de la moyenne pour les functions harmoniques. C. R. Acad. Sci. Paris 234 (1952), 21372139.Google Scholar
19Gray, A.. The volume of a small geodesic ball of a Riemannian manifold. Michigan Math. J. 20 (1973), 329344.Google Scholar
20Gray, A. and Vanhecke, L.. Riemannian geometry as determined by the volume of small geodesic balls. Acta Math. 142 (1979), 157198.CrossRefGoogle Scholar
21Gray, A. and Vanhecke, L.. The volume of tubes in a Riemannian manifold. Proc. London Math. Soc. 44 (1982), 215243.CrossRefGoogle Scholar
22Günther, P.. Über einige spezielle Probleme aus der Theorie der linearen partiellen Differentialgleichungen zweiter Ordung. Ber. Verh. Sächs. Akad. Wiss. Leipzig 102 (1957), 150.Google Scholar
23Helgason, S.. Differential operators on homogeneous spaces. Acta Math. 102 (1959), 240299.CrossRefGoogle Scholar
24Helgason, S.. Differential geometry and symmetric spaces (New York: Academic Press, 1962).Google Scholar
25Helgason, S.. The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassman manifolds. Acta Math. 113 (1965), 154180.CrossRefGoogle Scholar
26Lelong-Ferrand, J.. Geometrical interpretations of scalar curvature and regularity of conformal homeomorphisms. Differential geometry and relativity, 19–105. (in honor of A. Lichnerowicz) (Dordrecht: Reidel, 1976).Google Scholar
27Olevsky, M.. Solution du problème de Cauchy et de certains problèmes limites pour l'équation des ondes, l'équation de la chaleur et l'équation de Laplace dans les espaces à courbure constante. C. R. (Doklady) Akad. Sci. URSS (N.S.) 33 (1941), 282287.Google Scholar
28Olevsky, M.. On a generalization of Bessel functions. C. R. (Doklady) Akad. Sci. URSS (N.S.) 40 (1943), 58.Google Scholar
29Olevsky, M.. Quelques théorèmes de la moyenne dans les espaces à courbure constante, C. R. (Doklady) Akad. Sci. URSS (N.S.) 45 (1944), 9598.Google Scholar
30Olevsky, M.. Solution du probleme de Cauchy pour l'équation des ondes dans un espace à n dimensions à courbure constante. C. R. (Doklady) Akad. Sci. URSS (N.S.) 46 (1945), 36.Google Scholar
31Pizzetti, P.. Sulla media dei valori che una funzione dei punti dello spazio assume alla superficie di una sfera. Atti R. Accad. Rend. Cl. Sci. Fis. Mat. Natur. (5) 18 (1909), 182185.Google Scholar
32Pizzetti, P.. Sul significato geometrico del secondo parametro differenziale di una funziona sopra una superficie qualunque. Atti R. Accad. Rend. Cl. Sci. Fis. Mat. Natur. (5) 18 (1909), 309316.Google Scholar
33Riemann, B.. Gesammelt Werke (Leipzig, 1876).Google Scholar
34Roberts, P. H. and Ursell, H. D.. Random walk on a sphere and on a Riemannian manifold. Philos. Trans. Roy. Soc. London Ser. A 252 (1960), 317356.Google Scholar
35Ruse, H. S., Walker, A. G. and Willmore, T. J.. Harmonic spaces (Rome: Edizioni Cremonese, 1961).Google Scholar
36Sunada, T.. Spherical means and geodesic chains on a Riemannian manifold. Trans. Amer. Math. Soc. 267 (1981), 483501.CrossRefGoogle Scholar
37Thomas, T. Y.. The differential invariants of generalized spaces (Cambridge University Press, 1927).Google Scholar
38Walker, A. G.. Note on pseudo-harmonic functions. II. J. London Math. Soc. 22 (1947), 101104.CrossRefGoogle Scholar
39Weinstein, A.. Spherical means in spaces of constant curvature. Ann. Mat. Pura Appl. (IV) 60 (1962), 8792.CrossRefGoogle Scholar
40Weyl, H.. On the volume of tubes. Amer. J. Math. 61 (1939), 461472.CrossRefGoogle Scholar
41Willmore, T. J.. Mean-value theorems in harmonic Riemannian spaces. J. London Math. Soc. 25 (1950), 5457.CrossRefGoogle Scholar
42Zalcman, L.. Mean values and differential equations. Israel I. Math. 14 (1973), 339352.CrossRefGoogle Scholar