No CrossRef data available.
Published online by Cambridge University Press: 14 November 2011
We prove that for every dense Gδ set H, there exists a continuous function f, such that f intersects every analytic function in finitely many points and f is infinitely differentiable exactly at the points of H. This answers a problem of S. Agronsky, A. M. Bruckner, M. Laczkovich and D. Preiss. They proved a result which implies that every continuous function with finite intersections with analytic functions is infinitely differentiable at the points of a dense Gδ set.