Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T11:59:59.375Z Has data issue: false hasContentIssue false

A factorisation procedure for two by two matrix functions on the circle with two rationally independent entries

Published online by Cambridge University Press:  14 November 2011

S. Prößdorf
Affiliation:
Karl-Weierstrass-Institut für Mathematik, Akademie der Wissenschaften der DDR, Mohrenstrasse 39, 1086 Berlin, G.D.R.
F.-O. Speck
Affiliation:
Fachbereich Mathematik, Technische Hochschule Darmstadt, Schlossgartenstrasse 7, 6100 Darmstadt, F.R.G.

Synopsis

The aim of this paper is the explicit canonical or standard factorisation of matrix functions with Wiener algebra elements. The present approach covers all regular 2 × 2 matrices where two entries are arbitrary and the remaining two are linear combinations of the former with rational coefficient functions. It is based on the knowledge of how to factorise scalar functions and rational matrix functions. In general, one also needs the approximation of any scalar Wiener algebra function with a rational function. However, this can be easily circumvented in many applications by intuitive manipulations with rational matrix functions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Achieser, N. I.. Vorlesungen über Approximationsheorie (Berlin: Akademie-Verlag, 1953).Google Scholar
2Clancey, K. and Gohberg, I.. Factorization of Matrix Functions and Singular Integral Operators (Basel: Birkhäuser, 1981).CrossRefGoogle Scholar
3Daniele, V.. On the solution of two coupled Wiener-Hopf equations. SIAM J. Appl. Math. 44 (1984), 667679.CrossRefGoogle Scholar
4Gochberg, I. Z. and Feldman, I. A.. Faltungsgleichungen und Projektionsverfahren zu ihrer Lösung (Berlin: Akademie-Verlag, 1974; Basel: Birkhäuser, 1974).Google Scholar
5Gohberg, I.. The problem of factorization in normed rings, functions of isometric and symmetric operators, and singular integral equations. Uspekhi Mat. Nauk 19 (1964), 71124 (in Russian).Google Scholar
6Goldberg, R. R.. Fourier Transforms (Edinburgh: Cambridge University Press 1962).Google Scholar
7Jones, D. S.. Commutative Wiener-Hopf factorization of a matrix. Proc. Roy. Soc. London Ser. A393 (1984), 185192.Google Scholar
8Khrapkov, A. A.. Certain cases of the elastic equilibrium of an infinite wedge with a non-symmetric notch at the vertex, subjected to concentrated force. Prikl. Mat. Mekh. 35 (1971), 625637.Google Scholar
9Krein, M. G.. Integral equations on a half-line with kernels depending upon the difference of the arguments. Uspekhi Mat. Nauk 13 (1958), 3120 (in Russian); also in Amer. Math. Soc. Transl. 22 (1962), 163–288.Google Scholar
10Lebre, A. B.. Factorization in the Wiener algebra of a class of 2 ×s 2 matrix functions. Integral Equations Operator Theory, 12 (1989) 408423.CrossRefGoogle Scholar
11Litvinchuk, G. S. and Spitkovskii, I. M.. Factorization of Measurable Matrix Functions (Basel: Birkhäuser 1987, Berlin: Akademie-Verlag 1987).Google Scholar
12Meister, E.. Integraltransformationen mit Anwendungen auf Probleme der mathematischen Physik (Frankfurt am Main: Lang, 1983).Google Scholar
13Meister, E. and Speck, F.-O.. Modern Wiener-Hopf methods in diffraction theory. In Ordinary and Partial Differential Equations, vol. 2, Proceedings of a Conference in Dundee, eds. Sleeman, B. D., Jarvis, R. J., pp. 130172. Research Notes in Mathematics (Harlow: Longman, 1989).Google Scholar
14Meister, E. and Speck, F.-O.. The explicit solution of elastodynamical diffraction problems by symbol factorization. Z. Anal. Anwendungen. 8 (1989) (to appear).Google Scholar
15Meister, E. and Speck, F.-O.. Wiener-Hopf factorization of certain non-rational matrix functions in mathematical physics. In The Gohberg Anniversery Collection, Vol. II, Proceedings of a Conference in Calgary, pp. 385394 (Basel: Birkhauser, 1989).CrossRefGoogle Scholar
16Mikhlin, S. G. and Prössdorf, S.. Singular Integral Operators (Berlin: Springer, 1986; Berlin: Akademie-Verlag, 1986).CrossRefGoogle Scholar
17Prössdorf, S.. Einige Klassen singulärer Gleichungen (Berlin: Akademie-Verlag, 1974; Basel: Birkhäuser, 1974).Google Scholar
18Santos, A. F. dos and Teixeira, F. S.. The Sommerfeld problem revisited – solution spaces and the edge condition. J. Math. Anal. Appl. (to appear).Google Scholar
19Speck, F.-O.. General Wiener-Hopf Factorization Methods (London: Pitman, 1985).Google Scholar
20Speck, F.-O.. Mixed boundary value problems of the type of Sommerfeld's half-plane problem. Proc. Roy. Soc. Edinburgh Sect. A. 104 (1986), 261277.Google Scholar