Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T10:15:44.771Z Has data issue: false hasContentIssue false

VI.—Complex Four-dimensional Lie Algebras

Published online by Cambridge University Press:  14 February 2012

E. W. Wallace
Affiliation:
Department of Pure Mathematics, University of Liverpool

Synopsis

Canonical forms of the four-dimensional complex Lie algebras are obtained by considering the roots of certain well-defined vectors of the algebras. A complete set of characters of the algebras is also given, enabling any given four-dimensional complex Lie algebra to be identified with one of the canonical forms.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Cartan, E., 1894. “Sur la structure des groupes de transformations finis et continus”. Thèse, Paris, Nony. (Œuvres Completes. Pt. I, Vol. I, 137287.)Google Scholar
Chevalley, C., 1955. Theorie des groupes de Lie, III, Paris.Google Scholar
Dynkin, E. B., 1947. “The structure of semi-simple algebras”, Progr. Math. Sci., Moxon, 2, 59127. (Amer. Math. Soc. Translation, No. 17, 1950.)Google Scholar
Knebelman, M. S., 1935. “Classification of Lie algebras”, Ann. Math., Princeton, 36, 4656.CrossRefGoogle Scholar
Séminaire “Sophus Lie”, 19541955. Théorie des algèbres de Lie. Topologie des groupes de Lie. Ecole Normale Supérieure.Google Scholar