Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T09:21:19.353Z Has data issue: false hasContentIssue false

IV.—The Differential Equations Associated with the Uniformization of Certain Algebraic Curves*

Published online by Cambridge University Press:  14 February 2012

R. A. Rankin
Affiliation:
Department of Mathematics, Glasgow University

Synopsis

Every algebraic equation can be uniformized by automorphic functions belonging to a certain group of bilinear transformations. In certain cases, such as for hyperelliptic equations, this group is a subgroup of the monodromic group of a differential equation of the form

where R(z) is a rational function which, in general, contains unknown parameters as coefficients. A conjecture of E. T. Whittaker regarding the values of these parameters for the hyperelliptic case is proved for a wide variety of algebraic equations whose branch points possess certain symmetric properties, and is extended to equations of higher type. In several cases, the uniformizing functions belong to subgroups of the groups of the Riemann-Schwarz triangle functions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Burnside, W., 1893. “Note on the equationy 2 = x(x 4- 1)”, Proc. Lond. Math. Soc., 24, 1720.Google Scholar
Dalzell, D. P., 1930. “A note on automorphic functions”, J. Lond. Math. Soc., 5, 280282.CrossRefGoogle Scholar
Dhar, S. C., 1935. “On the uniformisation of a special kind of algebraic curve of any genus”, J. Lond. Math. Soc., 10, 259263.CrossRefGoogle Scholar
Ford, L. R., 1929. Automorphic Functions. New York.Google Scholar
Hodgkinson, J., 1936. “Note on the uniformization of hyperelliptic curves”, J. Lond. Math. Soc., 11, 185192.CrossRefGoogle Scholar
Klein, F., 1884. Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen votn fünften Grade. Leipzig. (Translation by Morrice, G. G., London 1888, 1913; reprint of German edition, New York 1956.)Google Scholar
Klein, F., and Fricke, R., 1890. Vorlesungen tiber die Theorie der Elliptischen Modulfunctionen. Leipzig, Vol. I (Vol. II, 1892).Google Scholar
Mursi, M., 1930. “On the uniformisation of algebraic curves of genus 3 ”, Proc. Edin. Math. Soc., 2, 101107.CrossRefGoogle Scholar
Pick, G., 1891. “Uber eine Normalform gewisser Differentialgleichungen zweiter und dritter Ordnung”, Math. Ann., 38, 139143.CrossRefGoogle Scholar
Rankin, R. A., 1954. “On horocyclic groups”, Proc. Lond. Math. Soc., 4, 219234.CrossRefGoogle Scholar
Rankin, R. A., 1957. “Sir Edmund Whittaker's work on automorphic functions”, Proc. Edin. Math. Soc [In the Press.]Google Scholar
Schwarz, H. A., 1890. Gesammelte Mathematische Abhandlungen. Berlin, Vol. II.CrossRefGoogle Scholar
Shabde, N. G., 1934. “A note on automorphic functions”, Proc. Benares Math. Soc., 16, 3946.Google Scholar
Stallmann, F., 1957. “Konforme Abbildung von Kreisbogenpolygone I I ”, Math. Z., 68, 2776.CrossRefGoogle Scholar
Vivanti, G., 1910. Les fonctions polyédriques et modulaires. Paris. (Translation by Cahen, A..)Google Scholar
Weber, H., 1886. “Ein Beitrag zu Poincare's Theorie der Fuchs'schen Funktionen”, Nachr. Ges. Wiss. Gottingen, No. 10, 359370.Google Scholar
Whittaker, E. T., 1898. “On the connexion of algebraic functions with automorphic functions”, Phil. Trans., 192A, 132.Google Scholar
Whittaker, E. T., 1929. “On hyperlemniscate functions, a family of automorphic functions”, J. Lond. Math. Soc., 4, 274278.CrossRefGoogle Scholar
Whittaker, J. M., 1930. “The uniformisation of algebraic curves”, J. Lond. Math. Soc., 5, 150154.CrossRefGoogle Scholar