Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T09:59:23.865Z Has data issue: false hasContentIssue false

3.—Uniqueness of Sturm-Liouville Coefficients*

Published online by Cambridge University Press:  14 February 2012

S. D. Wray
Affiliation:
Department of Mathematics, University of the Witwatersrand, Johannesburg, South Africa.

Synopsis

An analogue of the Riemannian theory of uniqueness of Fourier coefficients is developed for Sturm Liouville series, using asymptotic formulae for the eigenfunctions and other quantities. This theory generalises earlier work by Haar in that the coefficient function in the differential equation is only assumed to be integrable.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Haar, A., Zur Theorie der orthogonalen Funktionen-systeme (zweite Milleilung). Math. Ann., 71, 3853, 1911.Google Scholar
2Sears, D. B., Lectures on second-order ordinary differential equations. Part I: Classical Sturm-Liouville theory (preprint). Adelaide: Flinders Univ.Google Scholar
3Titchmarsh, E. C, The Theory of functions. Oxford, 1952.Google Scholar
4Wray, S. D., Sturm-Liouville and singular theory for second-order differential equations (Ph.D. Thesis). Adelaide: Flinders Univ., 1973.Google Scholar
5Zygmund, A., Sur la theorie riemannienne de certains systemes orthogonaux, I. Studia Math., 2, 97170, 1930.CrossRefGoogle Scholar
6Zygmund, A., Trigonometric series. Cambridge, 1968.Google Scholar