Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-07T04:23:54.992Z Has data issue: false hasContentIssue false

1.—Perturbation Theory for Sobolev Spaces

Published online by Cambridge University Press:  14 February 2012

Friedrich Stummel
Affiliation:
Department of Mathematics, Johann Wolfgang Goethe Universität, Frankfurt am Main

Synopsis

This paper studies Sobolev spaces under perturbation of domains of definition. It establishes the basic concepts, methods and results for the convergence of sequences of sets in ℝn, the strong and weak convergence of sequences of Sobolev spaces, the discrete compactness of natural embeddings and the continuous convergence of continuous linear functionals, boundary integrals and trace operators for sequences of Sobolev spaces.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Adams, R. A., Capacity and compact imbeddings. J.Math. Mech., 19, 923929, 1970.Google Scholar
2Adams, R. A. and Fournier, J., Some imbedding theorems for Sobolev spaces. Canad. J. Math., 23, 517530, 1971.CrossRefGoogle Scholar
3Agmon, S., Lectures on elliptic boundary value problems. Princeton: Van Nostrand, 1965.Google Scholar
4Dunford, N. and Schwartz, J. T., Linear operators. I. New York: Interscience, 1958.Google Scholar
5Friedman, A., Partial differential equations. New York: Holt, Rinehart and Winston, 1969.Google Scholar
6Grigorteff, R. D., Diskret kompakte Einbettungen in Sobolewschen Raumen. Math. Ann., 197, 7185, 1972.CrossRefGoogle Scholar
7Hausdorff, F., Grundzüge der Mengenlehre. New York: Chelsea, 1965.Google Scholar
8Littmann, W., A connection between α-capacity and m-polarity. Bull. Amer. Math. Soc, 73, 862866, 1967.CrossRefGoogle Scholar
9Meyers, N. G. and Serrin, J., H = W. Proc. Nat. Acad. Sci. U.S.A., 51, 10551056, 1964.CrossRefGoogle Scholar
10Morrey, Ch. B. Jr., Multiple integrals in the calculus of variations. Berlin:Springer, 1966.CrossRefGoogle Scholar
11Nečas, J., Les méthodes directes en theorie des équations elliptiques. Paris: Masson, 1967.Google Scholar
12Stummel, F., Rand-und Eigenwertaufgaben in Sobolewschen Räumen. Lecture Notes in Mathematics, 102, Berlin: Springer, 1969.Google Scholar
13Stummel, F., Diskrete Konvergenz Linearer Operatoren. I. Math. Ann. 190, 4592, 1970. II. Math. Z., 120, 231–264, 1971. III. Proc. Oberwolfach Confer. Linear Operators and Approximation, 1971: Int. Series Numer. Math., 20, Basel: Birkhauser, 1972.CrossRefGoogle Scholar
14Stummel, F., Singular perturbations of elliptic sesquilinear forms. Proc. Confer. Differential Equations, Dundee, 1972: Lecture Notes in Mathematics, 280, 155–180. Berlin: Springer, 1972.Google Scholar
15Stummel, F., Discrete convergence of mappings. Proc. Confer. Numer. Anal., Dublin, 1972. New York: Academic Press, 1973.Google Scholar
16Stummel, F., Approximation methods in analysis. Lecture Notes Series, Aarhus Univ., Mat.Inst., 35, 1973.Google Scholar