Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T09:46:25.296Z Has data issue: false hasContentIssue false

The use of uniformly labelled substrates and mass isotopomer analysis to study intermediary metabolism

Published online by Cambridge University Press:  03 August 2018

Heiner K. Berthold
Affiliation:
USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030
Linda J. Wykes
Affiliation:
USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030
Farook Jahoor
Affiliation:
USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030
Peter D. Klein
Affiliation:
USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030
Reeds Peter J.
Affiliation:
USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Energy and Protein Metabolism Group Workshop on ‘Application of stable isotopes to nutritional metabolism’
Copyright
Copyright © The Nutrition Society 1994

References

Berthold, H. K., Crain, P., Reeds, P. J. & Klein, P. D. (1994). Dietary pyrimidines but not dietary purines make a significant contribution to nucleic acid synthesis. Proceedings of the National Academy of Sciences, USA (In the Press).Google Scholar
Berthold, H. K., Hachey, D. L., Reeds, P. J., Thomas, O. P., Hoeksma, S. & Klein, P. D. (1991). Uniformly labeled algal protein used to determine amino acid essentiality in vivo. Proceedings of the National Academy of Sciences, USA 88, 8091-8095.Google Scholar
Brainard, J. R., Downey, R. S., Bier, D. M. & London, R. E. (1989). Use of multiple 13C-labeling strategies and 13C NMR to detect low levels of exogenous metabolites in the presence of large endogenous pools; measurement of glucose turnover in a human subject. Analytical Biochemistry 176, 307-312.Google Scholar
Di Donato, L., Des Rosiers, C., Montgomery, J. A., Davis, F., Garneau, M. & Brunengraber, H. (1993). Rates of gluconeogenesis and citric acid cycle in perfused livers, assessed from the mass spectrometric assay of the 13C-labeling pattern of glutamate. Journal of Biological Chemistry 268, 4170-4180.Google Scholar
Hellerstein, M. K., Christiansen, M., Kaempher, S., Kletke, C., Wu, K., Reid, J. S., Mulligan, K., Hellerstein, N. S. & Shackleton, C. H. L. (1991). Measurement of de novo hepatic lipogenesis in humans using stable isotopes. Journal of Clinical Investigation 87, 1841-1852.CrossRefGoogle ScholarPubMed
Hellerstein, M. K., Greenblatt, D. J. & Munro, H. N. (1987). Glycoconjugates as noninvasive probes of intrahepatic metabolism: I. Kinetics of label incorporation with evidence of a common precursor UDP-glucose pool for secreted glycoconjugates. Metabolism 36, 988-994.CrossRefGoogle ScholarPubMed
Hems, D. A., Whitton, P. D. & Taylor, E. A. (1972). Glycogen synthesis in the perfused liver of the fasted rat. Biochemical Journal 129, 529-538.CrossRefGoogle Scholar
Jahoor, F., Reeds, P. J. & Burrin, D. G. (1994). Measurements of plasma protein synthesis in the infant pig: a new stable isotopic approach using uniformly 13C-labeled glucose. American Journal of Physiology (In the Press).Google Scholar
Kalderon, B., Gopher, A. & Lapidot, A. (1986). Metabolic pathways leading to liver glycogen repletion in vivo studied by GC-MS and NMR. FEBS Letters 204, 29-32.CrossRefGoogle ScholarPubMed
Kalderon, B., Korman, S. H., Gutman, A. & Lapidot, A. (1989). Glucose recycling and production in glycogenosis type I and III: stable isotope technique study. American Journal of Physiology 257, E346-E353.Google Scholar
Katz, J., Kuwajima, M., Foster, D. W. & McGarry, J. D. (1986). The glucose paradox: new perspectives on hepatic carbohydrate metabolism. Trends in Biochemical Science 11, 136-140.CrossRefGoogle Scholar
Katz, J., Lee, W.-N. P., Wals, P. A. & Bergner, E. A. (1989). Studies of glycogen synthesis and the Kreb's cycle by mass isotopomer analysis with [U-13C]glucose in rats. Journal of Biological Chemistry 264, 12994-13001.Google Scholar
Katz, J. & McGarry, J. D. (1984). The glucose paradox. Is glucose a substrate for liver metabolism? Journal of Clinical Investigation 74, 1901-1909.Google Scholar
Katz, J., Wals, P. A. & Lee, W.-N. P. (1991). Determination of pathways of glycogen synthesis and the dilution of the three-carbon pool with [U-13C]glucose. Proceedings of the National Academy of Sciences, USA 88, 2103-2107.Google Scholar
Kelleher, J. K. (1986). Gluconeogenesis from labeled carbon: estimating isotope dilution. American Journal of Physiology 250, E296-E305.Google Scholar
Kelleher, J. K. & Masterson, T. M. (1992). Model equations for condensation biosynthesis using stable isotopes and radioisotopes. American Journal of Physiology 262, E118-E125.Google Scholar
Lee, W.-N. P., Sorou, S. & Bergner, E. A. (1991). Glucose isotope, carbon recycling and gluconeogenesis using [U-13C]glucose and mass isotopomer analysis. Biochemical Medicine and Metabolic Biology 45, 298-305.Google Scholar
McGarry, J. D., Kuwajima, M., Newgard, C. B., Foster, D. W. & Katz, J. (1987). From dietary glucose to liver glycogen: The full circle around. Annual Review of Nutrition 7, 51-73.Google Scholar
Magnusson, I., Schumann, W. C., Bartsch, G. E., Chandramouli, V., Kumaran, K., Wahren, J. & Landau, B. R. (1991). Noninvasive tracing of Kreb's cycle metabolism in liver. Journal of Biological Chemistry 266, 6875-6984.CrossRefGoogle ScholarPubMed
Newgard, C. B., Hirsch, L. J., Foster, D. W. & McGarry, J. D. (1983). Studies on the mechanism by which exogenous glucose is converted to liver glycogen in the rat. A direct or indirect pathway. Journal of Biological Chemistry 258, 8046-8052.Google Scholar
Reeds, P. J., Hachey, D. L., Patterson, B. W., Motil, K. J. & Klein, P. D. (1992). VLDL apolipoprotein B-100, a potential indicator of the isotopic labeling of the hepatic protein synthetic precursor pool in humans: Studies with multiple stable isotopically labeled amino acids. Journal of Nutrition 122, 457-467.Google Scholar
Schumann, W. C, Magnusson, I., Chandramouli, V., Kumaran, K., Wahren, J. & Landau, B. R. (1991). Metabolism of [2-14C]acetate and its use in assessing hepatic Krebs cycle activity and gluconeogenesis. Journal of Biological Chemistry 266, 6985-6990.Google Scholar
Scofleld, R. F., Kosugi, K., Schumann, W. C, Kumaran, K. & Landau, B. R. (1985). Quantitative estimate of the pathways followed in the conversion to glycogen of glucose administered to the fasted rat. Journal of Biological Chemistry 260, 8777-8782.CrossRefGoogle Scholar
Seglen, P. O. (1974). Autoregulation of glycolysis, respiration, gluconeogenesis and glycogen synthesis in isolated parenchymal rat liver cells under aerobic or anaerobic conditions. Biochimica et Biophysica Acta 338, 317-336.Google Scholar
Streja, D. A., Steiner, S., Marliss, E. B. & Vranic, M. (1977). Turnover and recycling of glucose in man during prolonged fasting. Metabolism 26, 1089-1098.CrossRefGoogle ScholarPubMed
Sugden, M. C., Watts, D. I., Palmer, T. & Myles, N. (1983). Direction of carbon flux in starvation and after refeeding: in vitro and in vivo effects of 3-mercaptopicolinate. Biochemistry International 7, 329-337.Google Scholar
Wehmeyer, N., Gunderson, H., Nauman, J., Savage, S. & Hartzell, C. (1994). Determination of glycogen synthesis pathway by 13C nuclear magnetic resonance analysis. Metabolism 43, 38-43.Google Scholar