Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T22:49:13.911Z Has data issue: false hasContentIssue false

Thyroid hormones and thermogenesis

Published online by Cambridge University Press:  28 February 2007

M. J. Dauncey
Affiliation:
Department of Cell Biology, AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge CB2 4AT
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Thermogenesis: mechanisms in large mammals’
Copyright
Copyright © The Nutrition Society 1990

References

Acheson, K. J. & Burger, A. G. (1980). A study of the relationship between thermogenesis and thyroid hormones. Journal of Clinical Endocrinology and Metabolism 51, 8489.CrossRefGoogle ScholarPubMed
Acheson, K. J., Jéquier, E., Burger, A. & Danforth, E. (1984). Thyroid hormones and thermogenesis: the metabolic cost of food and exercise. Metabolism 33, 262265.CrossRefGoogle ScholarPubMed
Anderson, B., Ekman, L., Gale, C. C. & Sundsten, J. W. (1962). Thyroidal response to local cooling of the ‘heat-loss centre’. Acta Physiologica Scandinavica 63, 186192.CrossRefGoogle Scholar
Apfelbaum, M., Bostsarron, J. & Lacatis, D. (1971). Effect of caloric restriction and excessive caloric intake on energy expenditure. American Journal of Clinical Nutrition 24, 14051409.CrossRefGoogle ScholarPubMed
Barker, S. B. (1951). Mechanism of action of the thyroid hormone. Physiological Reviews 31, 205243.CrossRefGoogle ScholarPubMed
Barker, S. B. & Klitagaard, H. M. (1952). Metabolism of tissues excised from thyroxine-injected rats. American Journal of Physiology 170, 8186.CrossRefGoogle ScholarPubMed
Beer, S. F., BirchamP. M. M., P. M. M., Bloom, S. R., Clark, P. M., Hales, C. N., Hughes, C. M., Jones, C. T., Marsh, D. R., Raggatt, P. R. & Findlay, A. L. R. (1989). The effect of a 72-h fast on plasma levels of pituitary, adernal, thyroid, pancreatic and gastrointestinal hormones in healthy men and women. Journal of Endocrinology 120, 337350.CrossRefGoogle Scholar
Biron, R., Burger, A., Chinet, A., Clausen, T. & Dubois-Ferrière, R. (1979). Thyroid hormones and the energetics of active sodium-potassium transport in mammalian skeletal muscles. Journal of Physiology 297, 4760.CrossRefGoogle ScholarPubMed
Brand, M. D. & Murphy, M. P. (1987). Control of electron flux through the respiratory chain in mitochondria and cells. Biological Reviews 62, 141193.CrossRefGoogle ScholarPubMed
Chaffce, R. R. J. & Roberts, J. C. (1971). Temperature acclinatization in birds and mammals. Annual Review of Physiology 33, 155202.CrossRefGoogle Scholar
Clausen, T. & Hansen, O. (1982). The Na+−K pump, energy metabolism, and obesity. Biochemical and Biophysical Research Communications 104, 357362.CrossRefGoogle ScholarPubMed
Close, W. H., Dauncey, M. J. & Ingram, D. L. (1980). Heat loss from humans measured with a direct calorimeter and heat-flow meters. British Journal of Nutrition 43, 8793.CrossRefGoogle ScholarPubMed
Close, W. H., Mount, L. E. & Start, I. B. (1971). The Influence of environmental temperature and plane of nutrition on heat losses from groups of growing pigs. Animal Production 13, 285294.Google Scholar
Danforth, E. & Burger, A. (1984). The role of thyroid hormones in the control of energy expenditure. Clinics in Endocrinology and Metabolism 13, 581595.CrossRefGoogle ScholarPubMed
Dauncey, M. J. (1980). Metabolic effects of altering the 24 h energy intake in man, using direct and indirect calorimetry British Journal of Nutrition 43, 257269.CrossRefGoogle ScholarPubMed
Dauncey, M. J. (1981). Influence of mild cold on 24 h energy expenditure, resting metabolism and diet-induced thermogenesis. British Journal of Nutrition 45, 257267.CrossRefGoogle ScholarPubMed
Dauncey, M. J., Brown, D., Hayashi, M. & Ingram, D. L. (1988). Thyroid hormone nuclear receptors in skeletal muscle as influenced by environmental temperature and energy intake. Quarterly Journal of Experimental Physiology 73, 183191.CrossRefGoogle ScholarPubMed
Dauncey, M. J. & Burton, K. A. (1989). 3H-Ouabain binding sites in porcine skeletal muscle as influenced by environmental temperature and energy intake. Pflüggers Archiv; European Journal of Physiology 414, 317323.CrossRefGoogle ScholarPubMed
Dauncey, M. J. & Ingram, D. L. (1979). Effects of dietary composition and cold exposure on non-shivering thermogenesis in young pigs and its alteration by the β-blocker propranolol. British Journal of Nutrition 41, 361370.CrossRefGoogle ScholarPubMed
Dauncey, M. J. & Ingram, D. L. (1986). Influence of a single meal on fractional disappearance and catabolic rates of 3,5,3'-triiodothyronine and thyroxine over 24 hours. Comparative Biochemistry and Physiology 83A, 8992.CrossRefGoogle Scholar
Dauncey, M. J., Ingram, D. L. & Macari, M. (1984). Histology of the thyroid gland in animals living under different conditions of energy intake and environmental temperature. Journal of Thermal Biology 9, 153157.CrossRefGoogle Scholar
Dauncey, M. J. & Kamada, T. (1990). Short-tcrm influence of 3,5.3'-triiodothyronine infusion on resting metabolic rate of the young pig. Hormone and Metubolic Research 22, 374377.CrossRefGoogle ScholarPubMed
Dauncey, M. J. & Morovat, A. (1989). Cold-induced changes in nuclear 3,5,3'-triiodothyronine receptors of porcine skeletal muscle. Journal of Physiology 418, 174P.Google Scholar
Dauncey, M. J., Ramsden, D. B., Kapadi, A. L., Macari, M. & Ingram, D. L. (1983). Increase in plasma concentrations of 3,5,3'-triiodothyronine and thyroxine after a meal. and its dependence on energy intake. Hormone and Metabolic Research 15, 499502.CrossRefGoogle ScholarPubMed
Dauncey, M. J., Wooding, F. B. P. & Ingram, D. L. (1981). Evidence for the presence of brown adipose tissue in the pig. Research in Veterinary Science 31, 7681.CrossRefGoogle ScholarPubMed
DeGroot, L. J., Coleoni, A. H., Rue, P. A., Seo, H., Martino, E. & Refetoff, S. (1977). Reduced nuclear triiodothyronine receptors in starvation-induced hypothyroidism. Biochemical and Biophysical Research Communicarions 79, 173178.CrossRefGoogle ScholarPubMed
DeGroot, L. J., Torresani, J., Carrayon, P. & Tirard, A. (1976). Factors influencing triiodothyronine binding properties of liver nuclear receptors. Acta Endocrinologica 83, 293304.Google ScholarPubMed
Denckla, W. D. & Marcum, E. (1973). Minimal O2 consumption as an index of thyroid status: standardization of method. Endocrinology 93, 6173.CrossRefGoogle ScholarPubMed
Dillmann, W. H., Bonner, R. A. & Oppenheimer, J. H. (1978). Glucagon administration decreases hepatic nuclear triiodothyronine binding capacity. Endocrinology 102, 16331636.CrossRefGoogle ScholarPubMed
Eastman, C. J., Eakins, R. P., Leith, I. M. & Williams, E. S. (1974). The thyroid response to prolonged cold exposure in man. Journal of Physiology 241, 175181.CrossRefGoogle ScholarPubMed
Evans, S. E. & Ingram, D. L. (1974). The significance of deep body temperature in regulating the concentration of thyroxine in the plasma of the pig. Journal of Physiology 236, 159170.CrossRefGoogle ScholarPubMed
Evans, S. E. & Ingram, D. L. (1977). The effect of ambient temperature upon the secretion of thyroxine in the young pig. Journal of Physiology 264, 511521.CrossRefGoogle ScholarPubMed
Geers, R., Ingram, D. L. & Dauncey, M. J. (1988). Time course of the change in nuclear 3,5,3'-triiodothyronine receptors of skeletal muscle in relation to energy intake. Quarterly Journal of Experimental Physiology 73, 447449.CrossRefGoogle ScholarPubMed
Graham, N. McC., Wainman, F. W., Blaxter, K. L. & Armstrong, D. G. (1959). Environmental temperature, energy metabolism and heat regulation in sheep. 1. Energy metabolism in closely clipped sheep. Journal of Agricultural Science, Cambridge 52, 1324.CrossRefGoogle Scholar
Griggio, M. A. & Ingram, D. L. (1985). Effect of long term differences in energy intake on metabolic rate and thyroid hormones. Hormone and Metabolic Research 17, 6771.CrossRefGoogle ScholarPubMed
Guernsey, D. L. & Edelman, I. S. (1983). Regulation of thermogenesis by thyroid hormones.In Molecular Basis of Thyroid Hormone Action, pp. 293324. [Oppenheimer, J. H. and Samuels, H. H., editors]. New York: Academic Press.CrossRefGoogle Scholar
Hafner, R. P., Nobes, C. D., McGown, A. & Brand, M. D. (1988). Altered relationship betweenprotonmotive force and respiration rate in non-phosphorylating mitochondria isolated from rats of different thyroid hormone status. European Journal of Biochemistry 178, 511518.CrossRefGoogle ScholarPubMed
Hamilton, C. L. (1976). Environmental temperature and feeding behaviour. In Progress in Biometeorology. pp. 174183 [Tromp, S. W., editor]. Amsterdam: Swets & Zeitlinger.Google Scholar
Heath, M. & Ingram, D. L. (1983). Thermoregulatory heat production in cold-reared and warm-reared pigs. American Journal of Physiology 244, R273–R278.Google ScholarPubMed
Heaton, J. M. (1972). The distribution of brown adipose tissue in the human. Journal of Anatomy 112, 3539.Google ScholarPubMed
Herpin, P. R., McBride, B. W. & Bayley, H. S. (1987). Effect of cold exposure on energy metabolism in the young pig. Canadian Journal of Physiology and Pharmacology 65, 236245.CrossRefGoogle ScholarPubMed
Himms-Hagen, J. (1976). Cellular thermogenesis. Annual Review of Physiology 38, 315351.CrossRefGoogle ScholarPubMed
Himms-Hagen, J. (1989). Role of thermogenesis in the regulation of energy balance in relation to obesity. Canadian Journal of Physiology and Pharmacology 67, 394401.CrossRefGoogle ScholarPubMed
Hoch, F. L. (1974). Metabolic effects of thyroid hormones. In Handbook of Physiology, Section 7, pp. 391411. [Geiger, S. R., editor]. Washington, DC: American Physiological Society.Google Scholar
Ingram, D. L. & Dauncey, M. J. (1980). Effects of dietary composition on energy metabolism and rate of utilization of thyroxine. In Energy Metabolism, pp. 411415 [Mount, L. E., editor]. London: Butterworths.CrossRefGoogle Scholar
Ingram, D. L. & Dauncey, M. J. (1986). Environmental effects on growth and development. In Control and Manipulation of Animal Growth, pp. 520 [Buttery, P. J., Haynes, N. B. and Lindsay, D. B., editors]. London: Butterworths.CrossRefGoogle Scholar
Ingram, D. L. & Dauncey, M. J. (1990). Role of the thyroid gland in adaptation to the environment. Polish Academy of Sciences Symposium. Karger Press (In the Press).Google Scholar
Ingram, D. L. & Slebodzinski, A. (1968). Oxygen consumption and thyroid gland activity during adaptation to high ambient temperature in young pigs. Research in Veterinary Science 6, 522530.CrossRefGoogle Scholar
Ismail-Beigi, F. & Edelman, I. S. (1970). Mechanisms of thyroid calorigenesis: role of active sodium transport. Proceedings of the National Academy of Sciences U.S.A. 67, 10711078.CrossRefGoogle Scholar
Jung, R. T., Shetty, P. S.. James, W. P. T., Barrand, M. A. & Callingham, B. A. (1979). Reduced thermogenesis in obesity. Nature 279, 322323.CrossRefGoogle ScholarPubMed
Kamada, T., Dauncey, M. J. & Ingram, D. L. (1987). Thyroid hormones and thermogenesis in the pig. Japanese Journal of Zootechnical Science 58, 192.Google Scholar
Kjeldsen, K., Nørgaard, A., Gøtzsche, C. O., Thomassen, A. & Clausen, T. (1984). Effect of thyroid function on number of Na-K pumps in human skeletal muscle. Lancet ii, 810.CrossRefGoogle Scholar
LeBlanc, J. & Mount, L. E. (1968). Effects of noradrenaline and adrenaline on oxygen consumption rate and arterial blood pressure in the newborn pig. Nature 217, 7778.CrossRefGoogle ScholarPubMed
Macari, M. (1984). Food intake and thermic effect of feeding in thyroid-deficient pigs. Physiology and Behavior 32, 245251.CrossRefGoogle ScholarPubMed
Macari, M., Dauncey, M. J., Ramsden, D. B. & Ingram, D. L. (1983a). Thyroid hormone metabolism after acclimatization to a warm or cold temperature under conditions of high or low energy intake. Quarterly Journal of Experimental Physiology 68, 709718.CrossRefGoogle ScholarPubMed
Macari, M., Ingram, D. L. & Dauncey, M. J. (1983b). Influence of thermal and nutritional acclimatization on body temperatures and metabolic rate. Comparative Biochemistry and Physiology 74A, 549553.CrossRefGoogle Scholar
Magnus-Levy, A. (1895). Uber den respiratorischen Gaswechsel unter dem Einfluss der Thyroidea sowie unter verschieden pathologischen Zustanden. Berliner Kliniker Wochenschrift 32, 650652.Google Scholar
Matzen, L. E. & Kvetny, J. (1989). The influence of caloric deprivation and food composition on TSH, thyroid hormones and nuclear binding of T3 in mononuclear blood cells in obese women. Metabolism 38, 555561.CrossRefGoogle ScholarPubMed
Milligan, L. P. & McBride, B. W. (1985). Energy costs of ion pumping by animal tissues. Journal of Nutrition 115, 13741382.CrossRefGoogle ScholarPubMed
Morovat, A. & Dauncey, M. J. (1990). Changes in skeletal muscle 3,5,3'-triiodothyronine nuclear receptors with thyroid status are dependent on energy balance. Hormone and Metabolic Research 22, 128.CrossRefGoogle ScholarPubMed
Nicholls, D. G. & Locke, R. M. (1984). Thermogenic mechanisms in brown fat. Physiological Reviews 64, 164.CrossRefGoogle ScholarPubMed
Oppenheimer, J. H., Schwartz, H. L., Mariash, C. N., Kinlaw, W. B., Wong, N. C. W. & Freake, H. C. (1987). Advances in our understanding of thyroid hormone action at the cellular level. Endocrine Reviews 8, 288308.CrossRefGoogle ScholarPubMed
Oppenheimer, J. H., Silva, E., Schwartz, H. C. & Surks, M. I. (1977). Stimulation of hepatic mitochondria1 α-glycerophosphate dehydrogenase and malic enzyme by L-triiodothyronine. Journal of Clinical Investigation 59, 517527.CrossRefGoogle Scholar
Palmblad, J., Levi, L., Burger, A., Melander, A., Westgren, U., von Schenk, H. & Skude, G. (1977). Effects of total energy withdrawal (fasting) on the levels of growth hormone, thyrotropin, cortisol, adrenaline, noradrenaline, T4, T3 and rT3 in healthy males. Acta Medica Scandinavica 201, 1522.CrossRefGoogle ScholarPubMed
Peeters, R., Buys, N. & Kühn, E. R. (1989). A simultaneous stimulation of the peroxidase activity in the thyroid gland and the hepatic monodeiodination, associated with a decrease in hepatic thiol groups, during chronic cold exposure of rats. Journal of Thermal Biology 14, 103107.CrossRefGoogle Scholar
Rall, J. E. (1978). Mechanism of action of T4. In The Thyroid, pp. 138148 [Werner, S. C. and Ingbar, S. H., editors]. Maryland: Harper & Row.Google Scholar
Reichlin, S., Martin, J. B., Mitnich, M. A., Boshans, R. L., Grimm, Y., Bollinger, J., Gordon, J. & Malacara, J. (1972). The hypothalamus in pituitary thyroid regulation. Recent Progress in Hormone Research 28, 229286.Google ScholarPubMed
Rothwell, N. J., Saville, M. E. & Stock, M. J. (1982). Sympathetic and thyroid influences on metabolic rate in fed, fasted and refed rats. American Journal of Physiology 243, R339R346.Google ScholarPubMed
Rothwell, N. J. & Stock, M. J. (1979). A role for brown adipose tissue in diet-induced thermogenesis. Nature 281, 3135.CrossRefGoogle ScholarPubMed
Ruegammer, W. R., Newman, G. H., Richert, D. A. & Westerfeld, W. W. (1965). Specificity of the α-glycerophosphate dehydrogenase and malic enzyme response to thyroxine. Endocrinology 77, 707715.CrossRefGoogle Scholar
Samuels, H. H., (1983). Identification and characterization of thyroid hormone receptors and action using cell culture techniques. In Molecular Basis of Thyroid Hormone Action, pp. 3565 [Oppenheimer, J. H. and Samuels, H. H., editors]. New York: Academic Press.CrossRefGoogle Scholar
Samuels, H. H., Forman, B. M., Horowitz, Z. D. & Ye, Z.-S. (1989). Regulation of gene expression by thyroid hormone. Journal of Clinical Investigation 81, 957967.CrossRefGoogle Scholar
Samuels, H. H., Forman, B. M., Horowitz, Z. D. & Ye, Z.-S. (1989). Regulation of gene expression by thyroid hormone. Annual Review of Physiology 51, 6236139.CrossRefGoogle ScholarPubMed
Spindler, B. J., MacLeod, J., Ring, J. & Baxter, J. D. (1975). Thyroid hormone receptors. Binding characteristics and lack of hormonal dependency for nuclear localization. Journal of Biological Chemistry 250, 41134119.CrossRefGoogle ScholarPubMed
Starr, P. & Roskelly, R. (1940). A comparison of the effects of thyrotropic hormone on the thyroid gland. American Journal of Physiology 130, 549556.CrossRefGoogle Scholar
Sulakhe, P. V., Fedelsova, M., McNamara, D. B. & Dhalla, N. (1971). Isolation of skeletal muscle membrane fragments. Comparison of normal and dystrophic muscle sarcolemma. Biochemical and Biophysical Research Communications 42, 793800.CrossRefGoogle ScholarPubMed
Tata, J. R. (1974). Growth and developmental action of thyroid hormones at the cellular level. In Handbook of Physiology, Section 7, pp. 469478 [Geiger, S. R., editor]. Washington, DC: American Physiological Society.Google Scholar
Trayhurn, P. (1989). Thermogenesis and the energetics of pregnancy and lactation. Canadian Journal of Physiology and Pharmacology 67, 370375.CrossRefGoogle ScholarPubMed
Utiger, R. D. (1982). Differing thyrotropin responses to increased serum triiodothyronine concentrations produced by overfeeding and by triiodothyronine administration. Metabolism 31, 180183.CrossRefGoogle ScholarPubMed
van der Heyden, J. T. M., Docter, H. R., van Toor, H., Wilson, J. H. P., Hennemann, G. & Krenning, E. P. (1986). Effects of caloric deprivation on thyroid hormone tissue uptake and generation of low-T3 syndrome. American Journal of Physiology 251, E156E163.Google ScholarPubMed
van Hardeveld, C. & Clausen, T. (1986). Ca2+ and thyroid hormone action. In Intracellular Calcium Regulation, pp. 355365 [Bader, H., Gietzen, K., Rosenthal, J., Rudel, R. and Wolf, H. U., editors]. Manchester: Manchester University Press.Google Scholar
van Hardeveld, C. & Kassenaar, A. A. H. (1980). A possible role for Ca2+ in thyroid hormone-dependent oxygen consumption in skeletal muscle of the rat. FEES Letters 121, 349351.CrossRefGoogle ScholarPubMed
Wimpfheimer, C., Saville, E., Voirol, M. J., Danforth, E. & Burger, A. G. (1979). Starvation-induced decreased sensitivity of resting metabolic rate to triiodothyronine. Science 205, 12721273.CrossRefGoogle ScholarPubMed