Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-31T15:13:37.917Z Has data issue: false hasContentIssue false

Some aspects of the biology of feeding and growth in fish

Published online by Cambridge University Press:  28 February 2007

Clive Talbot
Affiliation:
BP Nutrition Aquaculture Research Centre, PO Box 532, Stavanger, Norway
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Fish and Nutrition’
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Asdell, A. (1946). Comparative chronological age in man and other animals. Journal of Gerontology 1, 224226.CrossRefGoogle Scholar
Austreng, E., Storebakken, T. & Åsgård, T. (1987). Growth rate estimates for cultured Atlantic salmon and rainbow trout. Aquaculture 60, 157160.CrossRefGoogle Scholar
Black, D. & Love, R. M. (1986). The sequential mobilisation and restoration of energy reserves in tissues of Atlantic cod during starvation and refeeding. Journal of Comparative Physiology 156B, 469479.CrossRefGoogle Scholar
Brafield, A. E. (1985). Laboratory studies of energy budgets. In Fish Energetics, New Perspectives, pp. 257281 [Tytler, P. and Calow, P. editors]. Beckenham: Croom Helm.Google Scholar
Brett, J. R. (1956). Some principles in the thermal requirements of fishes. Quarterly Review of Biology 31, 7587.CrossRefGoogle Scholar
Brett, J. R. (1979). Environmental factors and growth. In Fish Physiology, vol. 8. Bioenergetics and Growth, pp. 599675 [Hoar, W. S., Randall, D. J. and Brett, J. R. editors]. London: Academic Press.CrossRefGoogle Scholar
Brett, J. R. & Groves, T. D. D. (1979). Physiological energetics. In Fish Physiology, vol. 8. Bioenergetics and Growth, pp. 280352 [Hoar, W. S., Randall, D. J. and Brett, J. R. editors]. London: Academic Press.Google Scholar
Brett, J. R., Shelbourn, J. E. & Shoop, C. T. (1969). Growth rate and body composition of fingerling sockeye salmon, Oncorhynchus nerka, in relation to temperature and ration size. Journal of the Fisheries Research Board of Canada 26, 23632394.Google Scholar
Bromage, N., Jones, J., Randall, C., Thrush, M., Davies, B., Springate, J., Duston, J. & Barker, G. (1992). Broodstock management, fecundity, egg quality and timing of egg production in the rainbow trout (Oncorhynchus mykiss). Aquaculture 100, 141176.CrossRefGoogle Scholar
Cho, C. Y. (1992). Feeding systems for rainbow trout and other salmonids with reference to current estimates of energy and protein requirements. Aquaculture 100, 107123.CrossRefGoogle Scholar
Cho, C. Y. & Woodward, B. (1989). Studies on the protein to energy ratio in diets for rainbow trout (Salmo gairdneri). In Energy Metabolism of Farmed Animals. European Association of Animal Production no. 43, pp, 3740 [van der Honing, Y. and Close, W. H. editors]. Wageningen, Netherlands: European Association of Animal Production.Google Scholar
Corey, P. D., Leith, D. A. & English, M. J. (1983). A growth model for coho salmon including effects of varying ration allotments and temperature. Aquaculture 30, 125143.CrossRefGoogle Scholar
Coutant, C. C. (1985). Striped bass, temperature, and dissolved oxygen: a speculative hypothesis for environmental risk. Transactions of the American Fisheries Society 114, 3161.Google Scholar
Cowey, C. B. (1992). Nutrition: estimating requirements of rainbow trout. Aquaculture 100, 177189.CrossRefGoogle Scholar
Cowey, C. B. & Walton, M. J. (1989). Intermediary metabolism. In Fish Nutrition, 2nd ed., pp. 259329 [Halver, J. E. editor]. London: Academic Press.Google Scholar
Cvancara, V. A. (1992). Current References in Fish Research, 17, 1183.Google Scholar
Dey, I. & Farkas, T. (1992). Temperature shifts induce adaptive changes in the physical state of carp (Cyprinus carpio L.) erythrocyte plasma membranes in vitro. Fish Physiology and Biochemistry 10, 347355.CrossRefGoogle ScholarPubMed
Elliott, J. M. (1976). Energy losses in the waste products of brown trout (Salmo trutta L). Journal of Animal Ecology 45, 561580.Google Scholar
Fänge, R. & Groves, D. (1979). Digestion. In Fish Physiology, vol. 8. Bioenergetics and Growth, pp. 161260 [Hoar, W. S., Randall, D. J. and Brett, J. R. editors]. London: Academic Press.Google Scholar
Fletcher, D. J. (1984). The physiological control of appetite in fish. Comparative Biochemistry and Physiology 4, 617628.Google Scholar
Gill, J. A., Sumpter, J. P., Donaldson, E. M., Dye, H. M., Souza, L., Berg, T., Wypych, J. & Langley, K. (1985). Recombinant chicken and bovine growth hormones accelerate growth in aquacultured juvenile Pacific salmon (Oncorhynchus kisutch). Bio/Technology 3, 643646.Google Scholar
Halver, J. E. (editor) (1989). Fish Nutrition, 2nd ed. London: Academic Press.Google Scholar
Higgins, P. J. & Talbot, C. (1985). Growth and feeding in juvenile Atlantic salmon (Salmo salar). In Nutrition and Feeding in Fish, pp. 243263 [Cowey, C. B., Mackie, A. M. and Bell, J. G. editors]. London: Academic Press.Google Scholar
Higgs, D. A., Fagerlund, U. H. M., McBride, J. R. & Eales, J. G. (1979). Influence of orally administered L-thyroxine or 3,5,3'-triiodo-L-thyronine on growth, food consumption and food conversion of under-yearling coho salmon (Oncorhynchus kisutch). Canadian Journal of Zoology 57, 19741979.CrossRefGoogle Scholar
Hoar, W. S. (1988). The physiology of smolting salmonids. In Fish Physiology, vol. 11B, pp. 275343 [Hoar, W. S. and Randall, D. J. editors]. London: Academic Press.Google Scholar
Hoar, W. S., Randall, D. J. & Brett, J. R. (editors) (1979). In Fish Physiology, vol. 8. Bioenergetics and Growth. London: Academic Press.Google Scholar
Hogman, W. J. (1968). Annulus formation on scales of four species of coregonids reared under artificial conditions. Journal of the Fisheries Research Board of Canada 25, 21112112.CrossRefGoogle Scholar
Holmes, W. N. & Donaldson, E. M. (1969). The body compartments and the distribution of electroytes. In Fish Physiology, vol. 1, pp. 189 [Hoar, W. S. and Randall, D. J., editors]. London: Academic Press.Google Scholar
Jensen, J. W. (1985). The potential growth of salmonids. Aquaculture 48, 223231.Google Scholar
Jobling, M. (1985). Growth. In Fish Energetics, New Perspectives, pp. 213230 [Tytler, P. and Calow, P., editors]. Beckenham: Croom Helm.CrossRefGoogle Scholar
Jobling, M. (1993). Bioenergetics: feed intake and energy partitioning. In Fish Ecophysiology, pp. 144 [Rankin, J. C. and Jensen, F. B., editors]. London: Chapman Hall.Google Scholar
Jobling, M. & Baardvik, B. M. (1991). Patterns of growth of maturing and immature Arctic charr, Salvelinus alpinus, in a hatchery population. Aquaculture 94, 343354.CrossRefGoogle Scholar
Johnson, I. H. (1993). Phenotypic plasticity of fish muscle to temperature change. In Fish Ecophysiology, pp. 322340 [Rankin, J. C. and Jensen, F. B., editors]. London: Chapman Hall.CrossRefGoogle Scholar
Love, R. M. (1980). The Chemical Biology of Fishes, vol. 2. London: Academic Press.Google Scholar
Matty, A. J. & Lone, K. P. (1985). The hormonal control of metabolism and feeding. In Fish Energetics, New Perspectives, pp. 185209 [Tytler, P. and Calow, P., editors]. Beckenham: Croom Helm.Google Scholar
Millward, D. J. (1989). The nutritional regulation of muscle growth and protein turnover. Aquaculture 79, 128.CrossRefGoogle Scholar
Nelson, J. S. (1984). Fishes of the World, 2nd ed. New York: John Wiley & Sons.Google Scholar
New, M. B. (1991). Turn of the millenium aquaculture. World Aquaculture 22, 2849.Google Scholar
Pálsson, J. Ö., Jobling, M. & Jørgensen, E. H. (1992). Temporal changes in daily food intake of Arctic charr, Salvelinus alpinus L., of different sizes monitored by radiography. Aquaculture 106, 5161.Google Scholar
Paulson, L. J. (1980). Models of ammonia excretion for brook trout (Salvelinus fontinalis) and rainbow trout (Salmo gairdneri). Canadian Journal of Fisheries and Aquatic Sciences 37, 14211425.Google Scholar
Pedersen, C. L. (1987). Energy budgets for juvenile rainbow trout at various oxygen concentrations. Aquaculture 62, 289298.Google Scholar
Randall, D. J. & Wright, P. A. (1987). Ammonia distribution and excretion in fish. Fish Physiology and Biochemistry 3, 107120.CrossRefGoogle ScholarPubMed
Rankin, J. C. & Jensen, F. B. (editors) (1993). Fish Ecophysiology. London: Chapman Hall.Google Scholar
Ricker, W. E. (1979). Growth rates and models. In Fish Physiology, vol. 8. Bioenergetics and Growth, pp. 677743 [Hoar, W. S., Randall, D. J. and Brett, J. R., editors]. London: Academic Press.CrossRefGoogle Scholar
Smith, L. S. (1989). Digestive functions in teleost fishes. In Fish Nutrition, 2nd ed., pp. 331421 [Halver, J. E., editor]. London: Academic Press.Google Scholar
Smith, R. R., Rumsey, G. L. & Scott, M. L. (1978). Heat increment associated with dietary protein, fat, carbohydrate, and complete diets in salmonids: Comparative energetic efficiency. Journal of Nutrition 108, 1025.Google Scholar
Steffens, W. (1989). Principles of Fish Nutrition. Chichester: Ellis Honvood.Google Scholar
Storebakken, T., Hung, S. S. O., Calvert, C. C. & Plisetskaya, E. M. (1991). Nutrient partitioning in rainbow trout at different feeding rates. Aquaculture 96, 191203.Google Scholar
Sumpter, J. P. (1992). Control of growth of rainbow trout (Oncorhynchus mykiss). Aquaculture 100, 299320.Google Scholar
Sundby, A., Eliassen, K., Blom, A. K. & Åsgård, T. (1991). Plasma insulin, glucagon, glucagon-like peptide and glucose levels in response to feeding, starvation and life long restricted feed ration in salmonids. Fish Physiology and Biochemistry 9, 253259.CrossRefGoogle ScholarPubMed
Tacon, A. G. J. & Cowey, C. B. (1985). Protein and amino acid requirements. In Fish Energetics, New Perspectives, pp. 155183 [Tytler, P. and Calow, P., editors]. Beckenham: Croom Helm.Google Scholar
Talbot, C. (1985). Laboratory methods in fish feeding and nutritional studies. In Fish Energetics, New Perspectives, pp. 125154 [Tytler, P. and Calow, P., editors]. Beckenham: Croom Helm.CrossRefGoogle Scholar
Talbot, C. & Higgins, P. J. (1983). A radiographic method for feeding studies on fish using metallic iron powder as a marker. Journal of Fish Biology 23, 211220.Google Scholar
Talbot, C., Preston, T. & East, B. H. (1986). Body composition of Atlantic salmon (Salmo salar L.) studied by neutron activation analysis. Comparative Biochemistry and Physiology 85A, 445450.CrossRefGoogle Scholar
Thorpe, J. E. (1977). Bimodal distribution of length of juvenile Atlantic salmon (Salmo salar L.) under artificial rearing conditions. Journal of Fish Biology 11, 175184.Google Scholar
Thorpe, J. E. (1986). Age at first maturity in Atlantic salmon, Salmo salar L.: freshwater period influence and conflicts with smolting. Canadian Special Publication of Fisheries and Aquatic Sciences 89, 714.Google Scholar
Tytler, P. & Calow, P. (editors) (1985). In Fish Energetics – New Perspectives. London: Croom Helm.Google Scholar
Weatherley, A. H. & Gill, H. S. (1987). The Biology of Fish Growth. London: Academic Press.Google Scholar
Wilson, R. P. (1991). Handbook of Nutrient Requirements of Finfish. Boca Raton: CRC Press.Google Scholar
Woiwode, J. G. & Adelman, I. R. (1991). Effects of temperature, photoperiod and ration size on growth of hybrid striped bass X white bass. Transactions of the American Fisheries Society 120, 217229.2.3.CO;2>CrossRefGoogle Scholar
Wooton, R. J. (1985). Energetics of reproduction. In Fish Energetics, New Perspectives, pp. 231254 [Tytler, P. and Calow, P., editors]. Beckenham: Croom Helm.Google Scholar
Wooton, R. J. (1990). Ecology of Teleost Fishes. London: Chapman Hall.Google Scholar