Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T12:06:01.312Z Has data issue: false hasContentIssue false

The sodium pump and other mechanisms of thermogenesis in selected tissues

Published online by Cambridge University Press:  28 February 2007

J. M. Kelly
Affiliation:
Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario N1G 2WI, Canada
B. W. McBride
Affiliation:
Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario N1G 2WI, Canada
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Thermogenesis: mechanisms in large mammals’
Copyright
Copyright © The Nutrition Society 1990

References

Adeola, O., Young, L. G., McBride, B. W. & Ball, R. O. (1989). In vitro Na+, K+ −ATPase (EC 3.6.1.3)-dependent respiration and protein synthesis in skeletal muscle of pigs fed at three dietary protein levels. British Journal of Nutrition 61, 453465.CrossRefGoogle Scholar
Attaix, D., Aurousseau, E., Bayle, G., Rosolowska-Huszcz, D. & Arnal, M. (1988). Respective influences of age and weaning on skeletal and visceral muscle protein synthesis in the lamb. Biochemical Journal 256, 791795.CrossRefGoogle ScholarPubMed
Attaix, D., Manghebati, A. & Arnal, M. (1986). Protein synthesis in small intestine and liver during postnatal development in the lamb. Reproduction, Nutrition et Développement 26, 703704.Google Scholar
Balaban, R. S., Soltoff, S. P., Storey, J. M. & Mandel, L. (1980). Improved renal cortical tubule suspension: Spectrophotometric study of O2 delivery. American Journal of Physiology 238, F50F59.Google Scholar
Baldwin, R. L. & Smith, N. E. (1974). Molecular control of metabolism. In The Control of Metabolism, pp. 1725 [Sink, J. B., editor]. State College: Pennsylvania State University Press.Google Scholar
Bates, P. C. & Holder, A. T. (1988). The anabolic actions of growth hormone and thyroxine on protein metabolism in Snell dwarf and normal mice. Journal of Endocrinology 119, 3141.CrossRefGoogle ScholarPubMed
Bauman, D. E., Eppard, P. J., DeGeeter, M. J. & Lanza, G. M. (1985). Responses of high-producing dairy cows to long-term treatment with pituitary somatotropin and recombinant somatotropin. Journal of Dairy Science 68, 13521362.CrossRefGoogle ScholarPubMed
Boisclair, Y., Bauman, D. E., Bell, A. W. & Dunshea, F. R. (1987). Muscle protein synthesis and whole-body N balance in fed and underfed steers. Federation of the American Society of Experimental Biology 2, A848.Google Scholar
Brodie, C. & Sampson, S. R. (1988). Characterization of thyroid hormone effects on Na-K pump and membrane potential of cultered rat skeletal myotubes. Endocrinology 123, 891897.Google Scholar
Brooks, B. J., Arch, J. R. S. & Newsholme, E. A. (1982). Effects of hormones on the rate of triacylglycerol/fatty acid substrate cycle in adipocytes and epididymal fat pad. FEBS Letters 146, 327330.Google Scholar
Brooks, B. J., Arch, J. R. S. & Newsholme, E. A. (1983). Effect of some hormones on the rate of triacylglycerol/fatty acid substrate cycle in adipose tissue of the mouse in vivo. Bioscience Reports 3, 263267.CrossRefGoogle ScholarPubMed
Brown, J. G., Bates, P. C., Holliday, M. A. & Millward, D. J. (1981). Thyroid hormones and muscle protein turnover: The effect of thyroid hormone deficiency and replacement in thyroidectomised rats. Biochemical Journal 194, 771782.CrossRefGoogle Scholar
Brown, J. G., & Millward, D. J. (1983). Dose response of protein turnover in rat skeletal muscle to triiodothyronine treatment. Biochimica et Biophysica Acta 757, 182190.Google Scholar
Bryant, D. T. W. & Smith, R. W. (1982). Protein synthesis in muscle of mature sheep. Journal of Agricultural Science, Cambridge 98, 639643.Google Scholar
Buttery, P. J. (1983). Hormonal control of protein deposition in animals. Proceedings of the Nutrition Society 42, 137148.Google Scholar
Buttery, P. J. (1984). Protein turnover and muscle metabolism in the ruminant. In Herbivore Nutrition in the Subtropics and Tropics, pp. 597612 [Gilchrist, F. M. C. and Mackie, R. I., editors]. Craighall, South Africa: The Science Press.Google Scholar
Carter, W. J., Van der Weijden Benjamin, W. S. & Faas, F. H. (1982). Effect of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle as measured by [14C]tyrosine infusion. Biochemical Journal 204, 6974.CrossRefGoogle ScholarPubMed
Challiss, R. A. J., Arch, J. R. S., Crabtree, B. & Newsholme, E. A. (1984 a). Measurement of the rate of fructose 6-phosphate and fructose 1, 6-bisphosphate in skeletal muscle using a single-isotope technique. Biochemical Journal 223, 849853.Google Scholar
Challiss, R. A. J., Arch, J. R. S. & Newsholme, E. A. (1984 b). Substrate cycling between fructose 6-phosphate and fructose 1, 6-bisphosphate in skeletal muscle. Biochemical Journal 221, 153161.CrossRefGoogle ScholarPubMed
Charters, Y. M. & Grimble, R. F. (1989). Tumour necrosis factor α affects protein synthesis in liver and skeletal muscle but not skin of Wistar rats. Proceedings of the Nutrition Society 48, 58A.Google Scholar
Crompton, L. A. & Lomax, M. A. (1989). The effect of growth hormone on hind-limb muscle protein metabolism in growing lambs. Proceedings of the Nutrition Society 48, 96A.Google Scholar
Davis, S. R., Berry, T. N. & Hughson, G. A. (1981). Protein synthesis in tissues of growing lambs. British Journal of Nutrition 46, 409419.Google Scholar
Dunshea, F. R. & Bell, A. W. (1989). Non-esterified fatty acid recycling (re-esterification and lipid mobilization in goats during early lactation). In Energy Metabolism of Farm Animals, pp. 119122 [Van Der Honing, Y. and Close, W. H., editors]. Wageningen: Pudoc.Google Scholar
Early, R. J., McBride, B. W. & Ball, R. O. (1988 a). Effects of glucose plus insulin infusions on phenylalanine metabolism in sheep. I. Effects on plasma concentration, entry rate and utilization by the hindlimb. Canadian Journal of Animal Science 68, 711719.Google Scholar
Early, R. J., McBride, B. W. & Ball, R. O. (1989 b). Effects of glucose plus insulin infusions on phenylalanine metabolism in sheep. II. Effects on in vivo and in vitro protein synthesis and related energy expenditures. Canadian Journal of Animal Science 68, 721730.Google Scholar
Early, R. J., McBride, B. W. & Ball, R. O. (1989 a). Whole body and tissue protein synthesis in beef steers treated with daily injections of recombinantly-derived bovine somatotropin. Journal of Animal Science 67, Suppl. 1, 215.Google Scholar
Early, R. J., Thompson, J. R. & Christopherson, R. J. (1989 b). Net blood exchange of branched-chain amino and α-keto acids across the portal-drained viscera and hindlimb of cattle during infusions of leucine and insulin. Canadian Journal of Animal Science 69, 131140.Google Scholar
Early, R. J., Thompson, J. R., Christopherson, R. J. & Sedgwick, G. W. (1987). Blood branched-chain amino acid and α-keto acid concentrations and net exchange across the portal-drained viscera and hindlimb of fed and fasted cattle. Canadian Journal of Animal Science 67, 10111020.CrossRefGoogle Scholar
Eisemann, J. H., Hammond, A. C., Bauman, D. E., Reynolds, P. J., McCutcheson, S. N., Tyrrell, H. F. & Haaland, G. L. (1986). Effect of bovine growth hormone administration on metabolism of growing Hereford heifers: Protein and lipid metabolism and plasma concentrations of metabolites and hormones. Journal of Nutrition 116, 25042515.CrossRefGoogle ScholarPubMed
Eisemann, J. H., Hammond, A. C., Rumsey, T. & Bauman, D. E. (1989). Nitrogen and protein metabolism and metabolites in plasma and urine of beef steers treated with somatotropin. Journal of Animal Science 67, 105115.Google Scholar
Eisemann, J. H. & Nienaber, J. A. (1989). Tissue and whole body oxygen uptake in fed and fasted steers. Journal of Animal Science 67, Suppl. 1,582 Abstr.Google Scholar
Else, P. L. & Hulbert, A. J. (1987). Evolution of mammalian endothermic metabolism: ‘leaky’ membranes as a source of heat. American Journal of Physiology 253, R1R7.Google ScholarPubMed
Fagan, J. M., Waxman, L. & Goldberg, A. L. (1987). Skeletal muscle and liver contain a soluble ATP + ubiquitin-dependent proteolytic system. Biochemical Journal 243, 335343.Google Scholar
Fell, B. F., Campbell, R. M., Mackie, W. S. & Weekes, T. E. C. (1972). Changes associated with pregnancy and lactation in some extrareproductive organs in the ewe. Journal of Agricultural Science 79, 397407.Google Scholar
Fell, B. F. & Weekes, T. E. C. (1975). Feed intake as a mediator of adaptation in the ruminal epithelium. In Digestion and Metabolism in the Ruminant, pp. 101118 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, Australia: The University of New England Publishing Unit.Google Scholar
Finley, D. & Varshavsky, A. (1985). The ubiquitin system: functions and mechanisms. Trends in Biological Science 10, 343346.Google Scholar
Garlick, P. J., Fern, M. & Preedy, V. R. (1983). The effect of insulin infusion and food intake on protein synthesis in postabsorptive rats. Biochemical Journal 210, 669676.Google Scholar
Garlick, P. J., McNurlan, M. A. & Preedy, V. R. (1980). A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochemical Journal 192, 719723.CrossRefGoogle ScholarPubMed
Garlick, P. J., Millward, D. J. & James, W. P. T. (1973). The diurnal response of muscle and liver protein synthesis in vivo in meal-fed rats. Biochemical Journal 136, 935945.Google Scholar
Garlick, P. J., Preedy, V. R. & Reeds, P. J. (1985). Regulation of protein turnover in vivo by insulin and amino acids. In Intracellular Protein Catabolism, pp. 555564 [Khaillarah, E. A., Bond, J. S. and Bird, J. W. C., editors]. New York: A. R. Liss Inc.Google Scholar
Gill, M., France, J., Summers, M., McBride, B. W. & Milligan, L. P. (1989). Simulation of the energy costs associated with protein turnover and Na, K+ −transport in growing lambs. Journal of Nutrition 119, 12871299.CrossRefGoogle Scholar
Glynn, I. M. (1964). The action of cardiac glycosides on ion movements. Pharmacological Reviews 16, 381407.Google Scholar
Goldberg, A. L., Tischler, M., DeMartino, G. & Griffin, G. (1980). Hormonal regulation of protein degradation and synthesis in skeletal muscle. Federation Proceedings 39, 3136.Google Scholar
Gregg, V. A. & Milligan, L. P. (1982 a). Role of Na+, K+ −ATPase in muscular energy expenditure of warm and cold-exposed sheep. Canadian Journal of Animal Science 62, 123132.Google Scholar
Gregg, V. A. & Milligan, L. P. (1982 b). In vitro energy costs of Na+, K+ −ATPase activity and protein synthesis in muscles from calves differing in age and breed. British Journal of Nutrition 48, 6571.Google Scholar
Gregg, V. A. & Milligan, L. P. (1982 c). O2 consumption and Na+, K+ −ATPase-dependent respiration in muscle of lambs and lactating and non-lactating ewes. In Energy Metabolism of Farm Animals, pp. 6669 [Ekern, A. and Sundstol, F., editors]. Ski, Norway: Agricultural University of Norway.Google Scholar
Gregg, V. A. & Milligan, L. P. (1987). Thyroid induction of thermogenesis in cultured rat hepatocytes and sheep liver. In Energy Metabolism of Farm Animals, pp. 1013 [Moe, P.W., Tyrrell, H. F. and Reynolds, P. J., editors]. Totowa, New Jersey: Roman and Littlefield.Google Scholar
Guma, A., Testar, T., Palacin, M. & Zorzano, A. (1988). Insulin-stimulated α-(methyl)aminoisobutyric acid uptake in skeletal muscle. Biochemical Journal 253, 625629.CrossRefGoogle ScholarPubMed
Harper, J. M. M., Soar, J. B. & Buttery, P. J. (1987). Changes in protein metabolism in ovine primary muscle cultures on treatment with growth hormone, insulin, insulin-like growth factor I or epidermal growth factor. Journal of Endocrinology 112, 8796.Google Scholar
Harris, C. I., Milne, G. & Oldham, J. D. (1981). Clearance and excretion of N7 −methylhistidine by lactating dairy cows. Proceedings of the Nutrition Society 39, 53A.Google Scholar
Harris, P. M., Garlick, P. J. & Lobley, G. E. (1989). Interactions between energy and protein metabolism in the whole body and hind limb of sheep in response to intake. In Energy Metabolism of Farm Animals, pp. 167170 [Van Der Honing, Y. and Close, W. H., editors]. Wageningen: Pudoc.Google Scholar
Hasselgren, P. O., James, P. H. & Fischer, J. E. (1986). Inhibited amino acid uptake in sepsis. Annals of Surgery 203, 360365.CrossRefGoogle ScholarPubMed
Herpin, P. R., McBride, B. W. & Bayley, H. S. (1987). Effect of cold exposure on energy metabolism in the young pig. Canadian Journal of Physiology and Pharmacology 65, 236245.Google Scholar
Hershko, A. (1988). Ubiquitin-mediated protein degradation. Journal of Biological Chemistry 263, 1523715240.Google Scholar
Hershko, A. & Ciechanover, A. (1982). Mechanisms of intracellular protein breakdown. Annual Reviews of Biochemistry 51, 335364.Google Scholar
Hughes, S. & York, D. A. (1983). [Na, K+]ATPase in liver and brain of obese mice. Hormone and Metabolic Research 15, 335339.Google Scholar
Hulbert, A. J. & Else, P. L. (1981). Comparison of the ‘mammal machine’ and the ‘reptile machine’: energy use and thyroid activity. American Journal of Physiology 241, R350R356.Google ScholarPubMed
Hunter, R. A., Davey, J. B. & Buttery, P. J. (1987). Fractional rate of protein synthesis in liver and individual muscles of lambs: effect of time of sampling following the use of the continuous infusion technique. Journal of Agricultural Science, Cambridge 108, 511514.Google Scholar
Huntington, G. B. (1984). Relationship of portal blood flow to metabolizable energy intake of cattle. Canadian Journal of Animal Science 64, Suppl., 1617.Google Scholar
Huntington, G. B. & McBride, B. W. (1988). Ruminant splanchnic tissues-energy costs of absorption and metabolism. In Biomechanisms Regulating Growth and Development. Beltsville Symposia in Agricultural Research, pp. 313328 [Steffens, G. L. and Rumsey, T. S., editors]. Dordrecht: Kluwer Academic Publishers.Google Scholar
Ismail-Beigi, F., Dietz, T. & Edelman, I. S. (1976). Thyroid thermogenesis: minimal contribution of energy requirement for protein synthesis. Molecular and Cellular Endocrinology 5, 1922.Google Scholar
Ismail-Beigi, F. & Edelman, I. S. (1970). Mechanism of thyroid calorigenesis: role of active sodium transport. Proceedings of the National Academy of Sciences U.S.A. 67, 10711078.Google Scholar
Jepson, M. M., Bates, P. C. & Millward, D. J. (1988). The role of insulin and thyroid hormones in the regulation of muscle growth and protein turnover in response to dietary protein in the rat. British Journal of Nutrition 59, 397415.Google ScholarPubMed
Jessop, N. S. (1988). Estimation of energy expenditure associated with Na+, K+ −ATPase activity in ovine liver. Proceedings of the Nutrition Society 47, 118A.Google Scholar
Kadowaki, M., Harada, N., Takahashi, S., Noguchi, T. & Naito, H. (1989). Differential regulation of the degradation of myofibrillar and total proteins in skeletal muscle of rats: Effects of Streptozotocin-induced diabetes, dietary protein and starvation. Journal of Nutrition 119, 471477.CrossRefGoogle ScholarPubMed
Kelly, J. M., Vaage, A. S., McBride, B. W. & Milligan, L. P. (1989). Oxygen consumption and the energy costs of Na+, K+ −ATPase in rumen epithelial papillae from Hereford steers. Journal of Dairy Science 72, Suppl. 1, 560.Google Scholar
Kennedy, P. M., Christopherson, R. J. & Milligan, L. P. (1986). Digestive responses to cold. In Control of Digestion and Metabolism in Ruminants, pp. 285306 [Milligan, L. P., Grovum, W. L. and Dobson, A., editors]. Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
Lin, M. H., Vander Tuig, J. G., Romsos, D. R., Akera, T. & Leveille, G. A. (1979). Na, K −ATPase enzyme units in lean and obese (ob/ob) thyroxine-injected mice. American Journal of Physiology 237, E265E272.Google Scholar
Lobley, G. E. (1986). The physiological bases of nutrient responses; growth and fattening. Proceedings of the Nutrition Society 45, 203214.Google Scholar
Lobley, G. E., Milne, V., Lovie, J. M., Reeds, P. J. & Pennie, K. (1980). Whole-body and tissueprotein synthesis in cattle. British Journal of Nutrition 43, 491502.Google Scholar
McBride, B. W., Bell, A. W., Vatnick, I. & Early, R. J. (1987 a). Energy expenditure associated with placental Na+, K+ −ATPase activity in chronically heat-stressed ewes. Proceedings of the Nutrition Society 47, 40A.Google Scholar
McBride, B. W., Burton, J. H. & MacLeod, G. K. (1987 b). Skeletal muscle energy expenditures associated with Na+, K+ −transport and protein synthesis in somatotropin-treated lactating cows. Journal of Dairy Science 70, Suppl. 1, 175.Google Scholar
McBride, B. W., Burton, J. L. & Burton, J. H. (1988). The influence of bovine growth hormone (somatotropin) on animals and their products. Research and Development in Agriculture 5, 121.Google Scholar
McBride, G. E., Christopherson, R. J. & Sauer, W. C. (1985). Metabolic rate and plasma thyroid hormone concentration of mature horses in response to changes in ambient temperature. Canadian Journal of Animal Science 65, 375382.CrossRefGoogle Scholar
McBride, B. W. & Early, R. J. (1987). Effect of feeding frequency on tissue protein synthesis and related energy expenditures in sheep. Canadian Journal of Animal Science 67, 1190 Abstr.Google Scholar
McBride, B. W. & Early, R. J. (1989). Energy expenditure associated with sodium/potassium transport and protein synthesis in skeletal muscle and isolated hepatocytes from hyperthyroid sheep. British Journal of Nutrition 62, 673682.Google Scholar
McBride, B. W., Early, R. J. & Ball, R. O. (1989). Protein synthesis and the energy costs of Na+, K+ −transport in tissues of somatotropin treated steers. In Energy Metabolism of Farm Animals, pp. 107111 [Van Der Honing, Y. and Close, W. H., editors]. Wageningen: Pudoc.Google Scholar
McBride, B. W. & Milligan, L. P. (1984). The effect of lactation on ouabain-sensitive respiration of the duodenal mucosa of cows. Canadian Journal of Animal Science 64, 817824.CrossRefGoogle Scholar
McBride, B. W. & Milligan, L. P. (1985 a). Influence of feed intake and starvation on the magnitude of Na+, K+ −ATPase (EC 3.6.1.3)−dependent respiration in duodenal mucosa of sheep. British Journal of Nutrition 53, 605614.Google Scholar
McBride, B. W. & Milligan, L. P. (1985 b). Magnitude of ouabain-sensitive respiration in the liver of growing, lactating and starved sheep. British Journal of Nutrition 54, 293303.Google Scholar
McBride, B. W. & Milligan, L. P. (1985 c). Magnitude of ouabain-sensitive respiration in the lamb hepatocytes (Ovis aries). International Journal Biochemistry 17, 4349.Google Scholar
Mayer, R. J. & Doherty, F. (1986). Intracellular protein catabolism: state of the art. FEBS Letters 198, 181193.Google Scholar
Milligan, L. P. (1971). Energetic efficiency and metabolic transformations. Federation Proceedings 30, 14541458.Google Scholar
Millward, D. J., Bates, P. C., Brown, J. G., Cox, M., Gugliano, R., Jepson, M. & Pell, J. (1985). Role of thyroid, insulin and corticosteroid hormones in the physiological regulation of protcolysis in muscle. In Intracellular Protein Catabolism, pp. 531542 [Khairallah, E. A., Bond, J. S. and Bird, J. W. C., editors]. New York: Alan R. Liss Inc.Google Scholar
Millward, D. J., Garlick, P. J. & Reeds, P. J. (1976). The energy cost of growth. Proceedings of the Nutrition Society 35, 339347.Google Scholar
Moore, R. D. (1983). Effects of insulin upon ion transport. Biochimica et Biophysica Acta 737, 149.Google Scholar
Muramatsu, T., Ueda, Y., Hirata, T., Okumura, J. & Tasaki, I. (1988). A note on the effect of ageing on whole-body protein turn-over in goats. Animal Production 46, 479481.CrossRefGoogle Scholar
Newsholme, E. A. (1987). Substrate cycles and energy metabolism: Their biochemical, biological, physiological and pathological importance. In Energy Metabolism of Farm Animals, pp. 174187 [Moe, P. W., Tyrrell, H. F. and Reynolds, P. J., editors]. Totowa, New Jersey: Rowman and Littlefield.Google Scholar
Newsholme, E. A. & Stanley, J. C. (1987). Substrate cycles: Their role in control of metabolism with specific References to the liver. Diabetes/Metabolism Reviews 3, 295305.Google Scholar
Oddy, V. H., Lindsay, D. B., Barker, P. J. & Northrop, A. J. (1987). Effect of insulin on hind-limb and whole-body leucine and protein metabolism in fed and fasted lambs. British Journal of Nutrition 58, 437452.CrossRefGoogle ScholarPubMed
Odedra, B. R., Bates, P. C. & Millward, D. J. (1983). Time course of the effect of catabolic doses of corticosterone on protein turnover in rat skeletal muscle and liver. Biochemical Journal 214, 617627.Google Scholar
Palmer, R. M., Bain, P. A. & Reeds, P. J. (1985). The effect of insulin and intermittent mechanical stretching on rates of protein synthesis and degradation in isolated rabbit muscle. Biochemical Journal 230, 117123.Google Scholar
Pell, J. M. & Bates, P. C. (1987). Collagen and non-collagen protein turnover in skeletal muscle of growth hormone-treated lambs. Journal of Endocrinology 115, R1R4.Google Scholar
Preedy, V. R. & Sugden, P. H. (1989). The effects of fasting or hypoxia on protein synthesis in vivo in subcellular fraction of rat heart and gastrocnemius muscle. Biochemical Journal 257, 519527.Google Scholar
Rabkin, M. & Blum, J. J. (1985). Quantitative analysis of intermediary metabolism in hepatocytes incubated in the presence and absence of glucagon with a substrate mixture containing glucose, ribose, fructose, alanine and acetate. Biochemical Journal 225, 761786.Google Scholar
Reeds, P. J. (1987). Metabolic control and future opportunities for growth regulation. Animal Production 45, 149169.Google Scholar
Reeds, P. J., Cadenhead, A., Fuller, M. F., Lobley, G. E. & McDonald, J. D. (1980). Protein turnover in growing pigs. Effects of age and food intake. British Journal of Nutrition 43, 445455.Google Scholar
Reeds, P. J., Fuller, M. F. & Nicholson, B. A. (1985). Metabolic basis of energy expenditure with particular reference to protein. In Substrate and Energy Metabolism in Man, pp. 4657 [Garrow, J. S. and Halliday, W., editors]. London: CRC.Google Scholar
Reeds, P. J., Haggarty, P., Wahle, K. W. J. & Fletcher, J. M. (1982). Tissue and whole-body protein synthesis in immature Zucker rats and their relationship to protein deposition. Biochemical Journal 204, 393398.Google Scholar
Reeds, P. J., Nicholson, B. A. & Fuller, M. F. (1987). Contribution of protein synthesis to energy expenditure in vivo and in vitro. In Energy Metabolism of Farm Animals, pp. 69 [Moe, P. W., Tyrrell, H. F. and Reynolds, P. J., editors]. Totowa, New Jersey: Rowman and Littlefield.Google Scholar
Reeds, P. J. & Palmer, R. M. (1986). The role of prostaglandins in the control of muscle protein turnover. In Control and Manipulation of Animal Growth, pp. 162186 [Buttery, P. J., Haynes, N. B. and Lindsay, D. B., editors]. London: Butterworths.Google Scholar
Rossier, B. C., Geering, K. & Kraehenbuhl, J. P. (1987). Regulation of the sodium pump: how and why? Trends in Biological Science 12, 483487.Google Scholar
Saddlier, S. & De Luise, M. (1986). Mouse soleus muscle Na-K pump activity: direct correlation with in vitro and in vivo oxygen consumption. Hormone and Metabolic Research 18, 757760.Google Scholar
Schaeffer, A. L., Davis, S. R. & Hughson, G. A. (1986). Estimation of tissue protein synthesis in sheep during sustained elevation of plasma leucine concentration by intravenous infusion. British Journal of Nutrition 56, 281288.Google Scholar
Siems, W., Dubiel, W., Dumbey, R., Muller, M. & Rapoport, S. M. (1984). Accounting for the ATP-consuming processes in rabbit reticulocytes. European Journal of Biochemistry 134, 101107.Google Scholar
Sinnett-Smith, P. A., Dumelow, N. W. & Buttery, P. J. (1983). Effects of trenbolone acetate and zeranol on protein metabolism in male castrate and female lambs. British Journal of Nutrition 50, 225234.Google Scholar
Skjaerlund, D. M., Mulvaney, D. R., Mars, R. H., Shroeder, A. L., Stachiw, M. A., Bergen, W. G. & Merkel, R. A. (1988). Measurement of protein turnover in skeletal muscle strips. Journal of Animal Science 66, 687698.Google Scholar
Stirewalt, W. S. & Low, R. B. (1983). Effects of insulin in vitro on protein turnover in rat epitrochlearis muscle. Biochemical Journal 210, 323330.Google Scholar
Summers, M., Carter, R. R., Early, R. J., Grovum, W. L. & Milligan, L. P. (1989). The ovine parotid gland – A model to compare in vivo and in vivo energy expenditures on ion transport and protein synthesis. In Energy Metabolism of Farm Animals, pp. 163166 [Van Der Honing, Y. and Close, W. H., editors]. Wageningen: Pudoc.Google Scholar
Summers, M., McBride, B. W. & Milligan, L. P. (1988). Components of basal energy expenditure. In Aspects of Digestive Physiology in Ruminants, pp. 257283 [Dobson, A. and Dobson, M. J., editors]. Ithaca, New York: Comstock Publishing Associates.Google Scholar
Swaminathan, R., Chan, E. L. P., Sin, L. Y., Ng, S. K. F. & Chan, A. Y. S. (1989). The effect of ouabain on metabolic rate in guinea-pigs: estimation of energy cost of sodium pump activity. British Journal of Nutrition 61, 467473.Google Scholar
Thompson, J. R., Christopherson, R. J. & Early, R. J. (1987). Cold environmental temperatures increase the rate of skeletal muscle protein breakdown in cattle. In Agriculture and Forestry Bulletin Special Issue, pp. 5253. Edmonton, Alberta: University of Alberta.Google Scholar
Tyrrell, H. F., Brown, A. C. G., Reynolds, P. J., Haaland, G. L., Peel, C. J., Bauman, D. E. & Steinhour, W. C. (1982). Effect of growth hormone on utilization of energy by lactating Holstein cows. In Energy Metabolism of Farm Animals, pp. 4649 [Akern, A. and Sundstol, F., editors]. NLH, Norway: The Agricultural University of Norway.Google Scholar
Vatnick, I., Bell, A. W., Kelly, J. M. & McBride, B. W. (1989). Gestational changes in hepatic oxygen consumption in vitro of the ovine fetus. In Energy Metabolism of Farm Animals, pp. 159162 [van Der Honing, Y. and Close, W. H., editors]. Wageningen: Pudoc.Google Scholar
Vernon, R. G. (1989). Endocrine control of metabolic adaptation during lactation. Proceedings of the Nutrition Society 48, 2332.CrossRefGoogle ScholarPubMed
Vincent, R. & Lindsay, D. B. (1985). Effect of pregnancy and lactation on muscle protein metabolism in sheep. Proceedings of the Nutrition Society 44, 77A.Google Scholar
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and the Whole Body. New York: North-Holland Publishing Company.Google Scholar
Wijayasinghe, M., Thompson, J. R. & Milligan, L. P. (1984). The preparation and in vitro viability of isolated external intercostal muscle fiber bundles from sheep. Canadian Journal of Animal Science 64, 785789.Google Scholar
Williamson, D. H. (1986). Regulation of metabolism during lactation in the rat. Reproduction, Nutrition et Développement 26, 597603.Google Scholar