Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T15:09:06.420Z Has data issue: false hasContentIssue false

Seasonal infections and nutritional status

Published online by Cambridge University Press:  28 February 2007

Neville F. Suttle
Affiliation:
Moredun Research Institute, 408 Gilmerton Road, Edinburgh EH17 7JH
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
‘Seasonality’
Copyright
Copyright © The Nutrition Society 1994

References

Barnes, E. H. & Dobson, R. J. (1990). Population dynamics of Trichostrongylus colubriformis in sheep: computer model to simulate grazing systems and the evolution of anthelmintic resistance. International Journal for Parasitology 20, 823831.CrossRefGoogle ScholarPubMed
Bown, M. D., Poppi, D. P. & Sykes, A. R. (1984). The effect of mixed infection on the site of plasma absorption in the small intestine. Canadian Journal of Animal Science 64, Suppl., 197198.CrossRefGoogle Scholar
Bown, M. D., Poppi, D. P. & Sykes, A. R. (1989). The effects of concurrent infection of Trichostrongylus colubriformis and Ostertagia circumcincta on calcium, phosphorus and magnesium transactions along the digestive tract of sheep. Journal of Comparative Pathology 101, 1120.CrossRefGoogle Scholar
Catchpole, J. & Harris, T. J. (1989). Interaction between coccidia and Nematodirus battus in lambs on pasture. Veterinary Record 124, 603605.CrossRefGoogle ScholarPubMed
Coop, R. L., Sykes, A. R. & Angus, K. W. (1977). The effect of a daily intake of Ostertagia circumcincta larvae on body weight, food intake and serum constituents in sheep. Research in Veterinary Science 23, 7683.CrossRefGoogle ScholarPubMed
Coop, R. L., Sykes, A. R. & Angus, K. W. (1982). The effect of three levels of intake of Ostertagia circumcincta larvae on growth rate, food intake and body composition in growing lambs. Journal of Agricultural Science 90, 247255.CrossRefGoogle Scholar
Heath, M. F. & Connan, R. M. (1991). Interaction of Ostertagia and Nematodirus species in sheep and potential of serum fructosamine determination in monitoring gastrointestinal parasitism. Research in Veterinary Science 51, 322326.CrossRefGoogle ScholarPubMed
Holmes, P. H. (1993). Interactions between parasites and animal nutrition: the veterinary consequences. Proceedings of the Nutrition Society 52, 113120.CrossRefGoogle ScholarPubMed
Holmes, P. H. & MacLean, J. M. (1971). The pathophysiology of ovine ostertagiasis: a study of the changes in plasma protein metabolism following single infections. Research in Veterinary Science 12, 265271.CrossRefGoogle ScholarPubMed
Jackson, F. (1993). Anthelmintic resistance – the state of play. British Veterinary Journal 149, 123138.CrossRefGoogle ScholarPubMed
Kimambo, A. E., MacRae, J. C., Walker, A., Watt, C. F. & Coop, R. L. (1988). The effect of prolonged subclinical infection with Trichostrongylus colubriformis on the performance and nitrogen metabolism of growing lambs. Veterinary Parasitology 28, 191203.CrossRefGoogle ScholarPubMed
Lunn, P. G., Northrop, C. A. & Wainwright, M. (1988). Hypoalbuminaemia in energy–protein malnourished rats infected with Nippostrongylus brasiliensis (Nematoda). Journal of Nutrition 118, 121127.CrossRefGoogle Scholar
Lunn, P. G. & Northrop-Clewes, C. A. (1993). The impact of gastrointestinal parasites on protein-energy malnutrition in man. Proceedings of the Nutrition Society 52, 101111.CrossRefGoogle ScholarPubMed
McAnulty, R. W., Clark, V. R. & Sykes, A. R. (1982). The effect of clean pasture and anthelmintic frequency on growth rates of lambs on irrigated pastures. Proceedings of the New Zealand Society of Animal Production 42, 187188.Google Scholar
MacRae, J. C. (1993). Metabolic consequences of intestinal parasitism. Proceedings of the Nutrition Society 52, 121130.CrossRefGoogle ScholarPubMed
Ollerenshaw, C. B., Graham, E. G. & Smith, L. P. (1978). Forecasting the incidence of parasitic gastroenteritis in England and Wales. Veterinary Record 103, 461465.CrossRefGoogle ScholarPubMed
Ollerenshaw, C. B. & Smith, L. P. (1966). An empirical approach to forecasting the incidence of nematodiriasis over England and Wales. Veterinary Record 79, 536540.CrossRefGoogle ScholarPubMed
Oosterhuis, C., McLean, K. & Suttle, N. F. (1992). Natural mixed nematode infections can induce sodium deficiency in grazing Finnish Landrace lambs. Proceedings of the Nutrition Society 51, 144A.Google Scholar
Poppi, D. P., Sykes, A. R. & Dynes, R. A. (1990). The effect of endoparasitism on host nutrition – the implications for nutrient manipulation. Proceedings of the New Zealand Society of Animal Production 50, 237243.Google Scholar
Rutter, W., Black, W. J. M., Fitzsimmons, J. & Swift, G. (1984). A clean grazing system for sheep – its development and extension. Research and Development in Agriculture 1, 4146.Google Scholar
Steel, J. W. (1994). Proceedings of Workshop on the Pathophysiology of Parasitic Infections at the 14th World Association for the Advancement of Veterinary Parasitology Conference, Cambridge. Veterinary Parasitology (In the Press).Google Scholar
Steel, J. W., Jones, W. O. & Symons, L. E. A. (1982). Effects of a concurrent infection of Trichostrongylus colubriformis on the productivity and physiological and metabolic responses on lambs infected with Ostertagia circumcincta. Australian Journal of Agricultural Research 33, 131140.CrossRefGoogle Scholar
Suttle, N. F. (1994). Anthelmintic unresponsive diarrhoeas in lambs. Proceedings of the Sheep Veterinary Society (In the Press).Google Scholar
Suttle, N. F. & Brebner, J. (1994). A putative role for nematode infection in an autumn diarrhoea of lambs which does not respond to anthelmintic treatment. Veterinary Record (In the Press).Google Scholar
Suttle, N. F., Brebner, J. & Hoeggel, U. (1994). Problems in differentiating the roles of copper deficiency, magnesium excess and nematodiasis in a summer diarrhoea of lambs. Veterinary Record (In the Press).Google Scholar
Sykes, A. R., Poppi, D. P. & Elliot, D. C. (1988). Effect of concurrent infection with Ostertagia circumcincta and Trichostrongylus colubriformis on the performance of growing lambs consuming fresh herbage. Journal of Agricultural Science 110, 531541.CrossRefGoogle Scholar
Waldrup, K. A. & Mackintosh, C. G. (1992). Fading elk syndrome research. Proceedings of a Deer Course for Veterinarians: Deer Branch Course no. 9. New Zealand Veterinary Association, pp. 170172. New Zealand: Methuen.Google Scholar
Watt, J. A. (1971). The Shepherd's Guide. Department of Agriculture and Fisheries Advisory Bulletin no. 9, p. 91. Edinburgh: H.M. Stationery Office.Google Scholar
Wilson, W. D. & Field, A. C. (1983). Absorption and secretion of calcium and phosphorus in the alimentary tract of lambs infected with daily doses of Trichostrongylus colubriformis or Ostertagia circumcincta larvae. Journal of Comparative Pathology 93, 6171.CrossRefGoogle ScholarPubMed
Yakoob, A., Holmes, P. H. & Armour, J. (1983). Pathophysiology of gastrointestinal trichostrongyles in sheep: plasma losses and changes in plasma pepsinogen levels associated with parasite challenge in immune animals. Research in Veterinary Science 34, 305309.CrossRefGoogle ScholarPubMed