Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T09:47:00.312Z Has data issue: false hasContentIssue false

Protein metabolism during lactation

Published online by Cambridge University Press:  18 April 2008

Neil S. Jessop
Affiliation:
Institute of Ecology and Resource Management, The University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh EH9 3JG
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Meeting the needs of lactation’
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Allison, J. B. & Wannemacher, R. W. (1965). The concept and significance of labile and over-all protein reserves of the body. American Journal of Clinical Nutrition 16, 445452.CrossRefGoogle ScholarPubMed
Blaxter, K. L. (1989). Energy Metabolism in Animals and Man, p. 235. Cambridge: Cambridge University Press.Google Scholar
Botts, R. L., Hemken, R. W. & Bull, L. S. (1979). Protein reserves in the lactating dairy cow. Journal of Dairy Science 62, 433440.CrossRefGoogle ScholarPubMed
Butts, C. A., Moughan, P. J., Smith, W. C., Reynolds, G. W. & Garrick, D. J. (1993). The effect of food dry matter intake on endogenous ileal amino acid excretion determined under peptide alimentation in the 50kg liveweight pig. Journal of the Science of Food and Agriculture 62, 235243.CrossRefGoogle Scholar
Emmans, G. C. & Oldham, J. D. (1988). Modelling of growth and nutrition in different species. In Modelling of Livestock Production Systems, pp. 1321 [Korver, S. and Van Arendonk, J. A. M. editors]. Wageningen: Kluwer Academic Publishers.Google Scholar
Friggens, N. C., Hay, D. E. F. & Oldham, J. D. (1993). Interactions between major nutrients in the diet and the lactational performance of rats. British Journal of Nutrition 69, 5971.CrossRefGoogle ScholarPubMed
Girard, J., Burnol, A.-F., Leturque, A. & Ferre, P. (1987). Glucose homeostasis in pregnancy and lactation. Biochemical Society Transactions 15, 10281030.CrossRefGoogle ScholarPubMed
Goodwill, M., Jessop, N. S. & Oldham, J. D. (1996a). Mammary sensitivity to protein restriction and realimentation. British Journal of Nutrition 76, 423434.CrossRefGoogle ScholarPubMed
Goodwill, M., Jessop, N. S. & Oldham, J. D. (1996b). Does the histamine receptor antagonist, cyproheptadine, increase voluntary food intake? Proceedings of the Nutrition Society 55, 252A.Google Scholar
Jessop, N. S. (1996). Protein energy interactions and their influence on lactational performance. Journal of Dairy Science 79, Suppl. 1, 76.Google Scholar
Knight, C. H. & Peaker, M. (1982). Development of the mammary gland. Journal of Reproduction and Fertility 65, 521536.CrossRefGoogle ScholarPubMed
Kyriazakis, I., Emmans, G. C. & Whittemore, C. T. (1990). Diet selection in pigs: choices made by growing pigs given foods of different protein concentration. Animal Production 51, 189199.Google Scholar
Marinchenko, G. V., McNamara, J. P., Becker-Khaleel, B. & Parmley, K. (1992). Growth hormone alters metabolic effects and proteolysis of insulin in adipose tissue during lactation. Proceedings of the Society of Experimental Biology and Medicine 200, 657666.CrossRefGoogle ScholarPubMed
Mercer, L. P., Dodds, S. J., Schweisthal, M. R. & Dunn, J. D. (1989). Brain histidine and food intake in rats fed diets deficient in single amino acids. Journal of Nutrition 119, 6694.CrossRefGoogle ScholarPubMed
Mercer, L. P., Kelly, D. S., Humphries, L. L. & Dunn, J. D. (1994). Manipulation of central nervous system histamine or histaminergic receptors (H1) affects food intake in rats. Journal of Nutrition 124, 10291036.CrossRefGoogle ScholarPubMed
Motil, K. J., Thotathuchery, M., Montandon, C. M., Hachey, D. L., Boutton, T. W., Klein, P. D. & Garza, C. (1994). Insulin, cortisol and thyroid hormones modulate maternal protein status and milk production and composition in humans. Journal of Nutrition 124, 12481257.CrossRefGoogle ScholarPubMed
Moughan, P. J. (1989). Simulation of the daily partitioning of lysine in the 50kg liveweight pig – a factorial approach to estimating amino acid requirements for growth and maintenance. Research and Development in Agriculture 6, 714.Google Scholar
Naismith, D. J. & Morgan, B. L. G. (1976). The biphasic nature of protein metabolism during pregnancy in the rat. British Journal of Nutrition 36, 563566.CrossRefGoogle ScholarPubMed
Oldham, J. D. (1987). Efficiencies of amino acid utilisation. In Feed Evaluation and Protein Requirement Systems for Ruminants, pp. 171186 [Jarrige, R. and Alderman, G. editors]. Luxembourg: Commission of the European Communities.Google Scholar
Pine, A. P., Jessop, N. S. & Oldham, J. D. (1994a). Maternal protein reserves and their influence on laciational performance in rats. British Journal of Nutrition 71, 1327.CrossRefGoogle ScholarPubMed
Pine, A. P., Jessop, N. S., Allan, G. F. & Oldham, J. D. (1994b). Maternal protein reserves and their influence on lactational performance in rats 2. Effects of dietary protein restriction during gestation and lactation on tissue protein metabolism and Na+, K+-ATPase (EC 3.6.1.3) activity. British Journal of Nutrition 72, 181197.CrossRefGoogle Scholar
Pine, A. P., Jessop, N. S., Allan, G. F. & Oldham, J. D. (1994c). Maternal protein reserves and their influence on lactational performance in rats 4. Tissue protein synthesis and turnover associated with mobilization of maternal protein. British Journal of Nutrition 72, 831844.CrossRefGoogle ScholarPubMed