Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T15:14:06.342Z Has data issue: false hasContentIssue false

Nutrition and mental performance

Published online by Cambridge University Press:  28 February 2007

Peter J. Rogers
Affiliation:
Consumer Sciences Department, Institute of Food Research, Earley Gate, Whiteknights Road, Reading RG6 2EF
Helen M. Lloyd
Affiliation:
Consumer Sciences Department, Institute of Food Research, Earley Gate, Whiteknights Road, Reading RG6 2EF
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Nutrition of the Brain’
Copyright
Copyright © The Nutrition Society 1994

References

Amiel, S. A. (1994). Nutrition of the brain: macronutrient supply. Proceedings of the Nutrition Society 53, 401405.CrossRefGoogle ScholarPubMed
Azari, N. P. (1991). Effects of glucose on memory processes in young adults. Psychopharmacology 105, 521524.CrossRefGoogle ScholarPubMed
Benton, D. (1990). The impact of increasing blood glucose on psychological functioning. Biological Psychology 30, 1319.Google Scholar
Benton, D., Brett, V. & Brain, P. F. (1987). Glucose improves attention and reaction to frustration in children. Biological Psychology 24, 95100.CrossRefGoogle ScholarPubMed
Benton, D. & Owens, D. S. (1993). Blood glucose and human memory. Psychopharmacology 113, 8388.Google Scholar
Benton, D., Owens, D. S. & Parker, P. Y. (1994). Blood glucose influences memory and attention in young adults. Neuropsychologia (In the Press).CrossRefGoogle ScholarPubMed
Benton, D. & Sargent, J. (1992). Breakfast, blood glucose and memory. Biological Psychology 33, 207210.CrossRefGoogle ScholarPubMed
Birch, G. G., Cowell, N. D. & Charles, G. A. (1977). Effects of dietary carbohydrate on intellectual performance. Proceedings of the Nutrition Society 36, 25A.Google Scholar
Booth, D. A. (1978). Acquired behavior controlling energy intake and output. Psychiatric Clinics of North America 1, 545579.Google Scholar
Brooke, J. D. (1973). Carbohydrates and human performance. In Molecular Structure and Function of Food Carbohydrate, pp. 235261 [Birch, G. G. and Green, L. F., editors]. Barking: Applied Science Publishers.Google Scholar
Brooke, J. D. & Toogood, S. (1973). Factory accidents and carbohydrate supplements. Proceedings of the Nutrition Society 32, 94A95A.Google ScholarPubMed
Bruce, M., Scott, N., Lader, M. & Marks, V. (1986). The psychopharmacological and electrophysiological effects of single doses of caffeine in healthy human subjects. British Journal of Clinical Pharmacology 22, 8187.Google Scholar
Bruce, M., Scott, N., Shine, P. & Lader, M. (1991). Caffeine withdrawal: a contrast of withdrawal symptoms in normal subjects who have abstained from caffeine for 24 hours and for 7 days. Journal of Psycho-pharmacology 5, 129134.CrossRefGoogle ScholarPubMed
Christensen, L. & Redig, C. (1993). Effect of meal composition on mood. Behavioral Neuroscience 107, 346353.Google Scholar
Clubley, M., Bye, C. E., Henson, T. A., Peck, A. W. & Riddington, C. J. (1979). Effects of caffeine and cyclizine alone and in combination on human performance, subjective effects and EEG activity. British Journal of Clinical Pharmacology 7, 157163.Google Scholar
Craig, A., Baer, K. & Diekmann, A. (1981). The effects of lunch on sensory-perceptual functioning in man. International Archives of Occupational and Environmental Health 49, 105114.CrossRefGoogle Scholar
Cunningham, K. M., Daly, J., Horowitz, M. & Read, N. W. (1991). Gastrointestinal adaptation to diets of differing fat composition in human volunteers. Gut 32, 483486.CrossRefGoogle ScholarPubMed
Dickie, N. H. & Bende, A. E. (1982). Breakfast and performance in schoolchildren. British Journal of Nutrition 48, 483496.Google Scholar
Editorial (1957). Physiologic results of breakfast habits. Nutrition Reviews 15, 196198.Google Scholar
Eysenck, H. J. & Eysenck, S. B. G. (1991). Manual of the Eysenck Personality Scales (EPS Adult). London: Hodder and Stoughton.Google Scholar
Fernstrom, J. D. (1994). The effect of dietary macronutrients on brain serotonin formation. In Appetite and Body Weight Regulation, Sugar, Fat, and Macronutrient Substitutes, pp. 5162 [Fernstrom, J. D. and Miller, G. D., editors]. Boca Raton: CRC Press.Google Scholar
Fernstrom, J. D. & Fernstrom, M. H. (1994). Dietary effects on tyrosine availability and catecholamine synthesis in the central nervous system: possible relevance to the control of protein intake. Proceedings of the Nutrition Society 53, 419429.CrossRefGoogle Scholar
Fernstrom, J. D. & Wurtman, R. J. (1972). Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 173, 149151.Google Scholar
File, S. E., Bond, A. J. & Lister, R. G. (1982). Interaction between effects of caffeine and lorazepam in performance tests and self-ratings. Journal of Clinical Psychopharmacology 2, 102106.Google Scholar
Finnigan, F. & Hammersley, R. (1992). The effects of alcohol on performance. In Handbook of Human Performance, vol. 2, Health and Performance, pp. 73126 [Smith, A. P. and Jones, D. M., editors]. London: Academic Press.Google Scholar
Gold, P. E. (1986). Glucose modulation of memory storage processing. Behavioral and Neural Biology 45, 342349.CrossRefGoogle ScholarPubMed
Griffiths, R. R. & Woodson, P. P. (1988). Caffeine and physical dependence: a review of human and laboratory animal studies. Psychopharmacology 94, 437451.Google Scholar
Hall, J. L., Gonder-Frederick, L. A., Chewning, W. W., Silveira, J. & Gold, P. E. (1989). Glucose enhancement of performance on memory tests in young and aged humans. Neuropsychologia 27, 11291138.Google Scholar
Hasenfratz, M., Bunge, A., Dal Prá, G. & Bättig, K. (1993). Antagonistic effects of caffeine and alcohol on mental performance parameters. Pharmacology, Biochemistry and Behavior 46, 463465.CrossRefGoogle ScholarPubMed
Horton, J. R. & Yates, A. J. (1987). The effects of long-term high and low refined-sugar intake on blood glucose regulation, mood, bodily symptoms and cognitive functioning. Behaviour Research and Therapy 25, 5766.Google Scholar
Hrboticky, K., Leiter, L. A. & Anderson, G. H. (1985). Effects of L-tryptophan on short term food intake in lean men. Nutrition Research 5, 595607.Google Scholar
James, J. E. (1991). Caffeine and Health. London: Academic Press.Google Scholar
Jarvis, M. (1993). Does caffeine intake enhance absolute levels of cognitive performance? Psycho-pharmacology 110, 4552.CrossRefGoogle ScholarPubMed
Johnson, E. O., Kamilaris, T. C., Chrousos, G. P. & Gold, P. W. (1992). Mechanisms of stress: a dynamic overview of hormonal and behavioral homeostasis. Neuroscience and Biobehavioral Reviews 16, 115130.Google Scholar
Kanarek, R. B. & Marks-Kaufman, R. (1991). Nutrition and Behavior: New Perspectives. New York: Van Nostrand Reinhold.Google Scholar
Kanarek, R. B. & Swinney, D. (1990). Effects of food snacks on cognitive performance in male college students. Appetite 14, 1427.CrossRefGoogle ScholarPubMed
Keul, J., Huber, G., Lehmann, M., Berg, A. & Jakob, E.-F. (1982). Einfluss von Dextrose auf Fahrleistung, Konzentrationsfähigkeit, Kreislauf und Stoffwechsel im Kraftfahrzeug-Simulator (Doppleblind-Studie im Cross-over design) (Effects of dextrose on driving ability, concentration, circulation and metabolism measured in a driving simulator (double-blind study using a cross-over design)). Aktuelle ErnährungsMedizin 7, 714.Google Scholar
Kuznicki, J. T. & Turner, L. S. (1986). The effects of caffeine on caffeine users and non-users. Physiology and Behavior 37, 397408.CrossRefGoogle ScholarPubMed
Lapp, J. E. (1981). Effects of glycemic alterations and noun imagery on the learning of paired associates. Journal of Learning Disabilities 14, 3538.CrossRefGoogle ScholarPubMed
Leathwood, P. D. (1987). Tryptophan availability and serotonin synthesis. Proceedings of the Nutrition Society 46, 143156.Google Scholar
Liddle, R. A., Goldfine, I. D. & Williams, J. A. (1983). Bioassay of circulating CCK in rat and human plasma. Gastroenterology 84, 12311236.Google Scholar
Lieberman, H. R., Caballero, B. & Finer, N. (1986 a). The composition of lunch determines afternoon plasma tryptophan ratios in humans. Journal of Neural Transmission 65, 211217.Google Scholar
Lieberman, H. R., Corkin, S., Spring, B. J., Growden, J. H. & Wurtman, R. J. (1983). Mood, performance, and pain sensitivity: changes induced by food constituents. Journal of Psychiatric Research 17, 135145.Google Scholar
Lieberman, H. R., Spring, B. & Garfield, G. S. (1986 b). The behavioral effects of food constitutents: strategies used in studies of amino acids, protein, carbohydrate and caffeine. Nutrition Reviews 44 (Suppl.), 6169.CrossRefGoogle Scholar
Lieberman, H. R., Wurtman, R. J., Emde, G. C., Roberts, C. & Coviella, I. L. G. (1987). The effects of low doses of caffeine on human performance and mood. Psychopharmacology 92, 308312.Google Scholar
Lloyd, H. M., Green, M. W. & Rogers, P. J. (1994). Effects of iso-caloric lunches differing in fat and carbohydrate content on cognitive performance and mood. Physiology and Behavior (In the Press).Google Scholar
Manning, C. A., Hall, J. L. & Gold, P. E. (1990). Glucose effects on memory and other neuropsychological tests in elderly humans. Psychological Science 1, 307311.Google Scholar
Pollitt, E. (1987). Effects of iron deficiency on mental development: methodological considerations and substantive findings. In Nutritional Anthropology, pp. 225254 [Johnson, F. E., editor]. New York: Alan R. Liss.Google Scholar
Pollitt, E., Leibel, R. L. & Greenfield, D. (1981). Brief fasting, stress, and cognition in children. American Journal of Clinical Nutrition 34, 15261533.Google Scholar
Pollitt, E., Lewis, N. L., Garza, C. & Shulman, R. J. (1983). Fasting and cognitive function. Journal of Psychiatric Research 17, 169174.CrossRefGoogle Scholar
Pramming, S., Thorsteinsson, B., Theilgaard, A., Pinner, E. M. & Binder, C. (1986). Cognitive function during hypoglycaemia in type I diabetes mellitus. British Medical Journal 292, 647650.Google Scholar
Richardson, J. T. (1990). Cognitive function in diabetes mellitus. Neuroscience and Biobehavioral Reviews 14, 385388.Google Scholar
Rogers, P. J., Edwards, S., Green, M. W. & Jas, P. (1992). Nutritional influences on mood and cognitive performance: the menstrual cycle, caffeine and dieting. Proceedings of the Nutrition Society 51, 343351.Google Scholar
Rogers, P. J. & Richardson, N. J. (1993). Why do we like drinks that contain caffeine? Trends in Food Science and Technology 4, 108111.Google Scholar
Siebert, G., Gessner, B. & Klasser, M. (1986). Energy supply of the central nervous system. Bibliotheca Nutritio et Dieta 38, 126.Google Scholar
Smart, J. L. (1993). ‘Malnutrition, learning and behaviour’: 25 years on from the MIT symposium. Proceedings of the Nutrition Society 52, 189199.Google Scholar
Smith, A. P. & Kendrick, A. M. (1992). Meals and performance. In Handbook of Human Performance. vol. 2, Health and Performance, pp. 223 [Smith, A. P. and Jones, D. M., editors]. London: Academic Press.Google Scholar
Smith, A. P., Leekam, S., Ralph, A. & McNeill, G. (1988). The influence of meal composition on post-lunch performance efficiency and mood. Appetite 10, 195203.Google Scholar
Smith, A. P. & Miles, C. (1986). Acute effects of meals, noise and nightwork. British Journal of Psychology 77, 377387.Google Scholar
Smith, A. P., Rusted, J. M., Savory, M., Eaton-Williams, P. & Hall, S. R. (1991). The effects of caffeine, impulsivity and time of day on performance, mood and cardiovascular function. Journal of Psycho-pharmacology 5, 120128.Google Scholar
Spring, B., Chiodo, J. & Bowen, D. J. (1987). Carbohydrates, tryptophan, and behavior: a methodological review. Psychological Bulletin 102, 234256.CrossRefGoogle ScholarPubMed
Spring, B., Maller, O., Wurtman, J., Digman, L. & Cozolino, L. (1983). Effects of protein and carbohydrate meals on mood and performance: interactions with sex and age. Journal of Psychiatric Research 17, 155167.Google Scholar
Stacher, G., Bauer, H. & Steinringer, H. (1979). Cholecystokinin decreases appetite and activation evoked by stimuli arising from the preparation of a meal in man. Physiology and Behavior 23, 325331.Google Scholar
Steele, C. M. & Josephs, R. A. (1990). Alcohol myopia: its prized and dangerous effects. American Psychologist 45, 921933.Google Scholar
Teff, K. L., Young, S. N. & Blundell, J. E. (1989). The effect of protein or carbohydrate breakfasts on subsequent plasma amino acid levels, satiety and nutrient selection in normal males. Pharmacology, Biochemistry and Behavior 34, 829837.CrossRefGoogle ScholarPubMed
van der Stelt, O. & Snel, J. (1993). Effects of caffeine on human information processing. In Caffeine, Coffee and Health, pp. 291316 [Garattini, S., editor]. New York: Raven Press.Google Scholar
Wells, A. S. & Read, N. W. (1994). Meal composition and post-prandial mood and alertness: the influence of the fat and energy content of meals ingested mid morning and at lunch time. Proceedings of the Nutrition Society (In the Press).Google Scholar
Wenk, G. L. (1989). An hypothesis on the role of glucose in the mechanism of action of cognitive enhancers. Psychopharmacology 99, 431438.Google Scholar
Wurtman, R. J., Hefti, F. & Melamed, E. (1981). Precursor control of neurotransmitter synthesis. Pharmacological Reviews 32, 315335.Google Scholar
Wurtman, R. J. & Wurtman, J. J. (1992). The use of carbohydrate-rich snacks to modify mood state: a factor in the production of obesity. In The Biology of Feast and Famine, Relevance to Eating Disorders, pp. 151156 [Anderson, G. H. and Kennedy, S. H., editors]. San Diego: Academic Press.Google Scholar
Young, S. N. (1991). Some effects of dietary components (amino acids, carbohydrate, folic acid) on brain serotonin synthesis, mood and behaviour. Canadian Journal of Physiology and Pharmacology 69, 893903.Google Scholar