Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T15:53:45.241Z Has data issue: false hasContentIssue false

Mass spectrometric analysis of stable-isotope-labelled amino acid tracers

Published online by Cambridge University Press:  03 August 2018

Tom Preston
Affiliation:
Scottish Universities Research and Reactor Centre, East Kilbride, Glasgow
Christine Slater
Affiliation:
Scottish Universities Research and Reactor Centre, East Kilbride, Glasgow
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Energy and Protein Metabolism Group Workshop on ‘Application of stable isotopes to nutritional metabolism’
Copyright
Copyright © The Nutrition Society 1994

References

Barrie, A., Bricout, J. & Koziet, J. (1984). Gas chromatography-stable isotope ratio analysis at natural abundance levels. Biomedical Mass Spectrometry 11, 583-588.CrossRefGoogle Scholar
Brookes, S. T., Davies, J. E., Scrimgeour, C. M., Smith, K. & Watt, P. W. (1991). Single cycle analysis of 15N and 13C enrichment in proteins. Proceedings of the 1st Biennial International Conference on Amino Acid Research, Kyoto, 13-19 Aug 1991. Google Scholar
Brookes, S. T. & Milne, E. (1991). Analysis of L-(l-13C)-leucine by continuous flow-isotope ratio mass spectrometry. Clinical Nutrition 10, Special Suppl. 2, p. 48.CrossRefGoogle Scholar
Calder, A. G., Anderson, S. E., Grant, I., McNurlan, M. A. & Garlick, P. J. (1992). The determination of low ds-phenylalanine enrichment (0-002-0-09 atom percent excess), after conversion to phenylethylamine, in relation to protein turnover studies by gas chromatography/electron impact ionisation mass spectrometry. Rapid Communications in Mass Spectrometry 6, 421-424.CrossRefGoogle Scholar
Fearon, K. C. H., McMillan, D. C., Preston, T., Winstanley, F. P., Cruickshank, A. M. & Shenkin, A. (1991). Elevated circulating interleukin-6 is associated with an acute-phase response but reduced fixed hepatic protein synthesis in patients with cancer. Annals of Surgery 213, 26-31.Google Scholar
Hobson, K. A., Alisauskas, R. T. & Clark, R. G. (1993). Stable nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analyses of diet. The Condor 95, 388-394.Google Scholar
Matthews, D. E. & Hayes, J. M. (1978). Isotope-ratio-monitoring gas chromatography-mass spectrometry. Analytical Chemistry 50, 1465-1473.CrossRefGoogle Scholar
Molnar, J. A., Alpert, N. M., Wolfe, M., Burke, J. F. & Young, V. R. (1985). Assessment of skin collagen turnover using l8O. In Substrate and Energy Metabolism in Man, p. A17 [Garrow, J. S. and Halliday, D., editors]. London: John Libbey.Google Scholar
Nier, A. O. (1947). A mass spectrometer for isotope and gas analysis. Review of Scientific Instruments 18, 398-411.CrossRefGoogle ScholarPubMed
Preston, T. (1992). The measurement of stable isotope natural abundance variations. Plant, Cell and Environment 15, 1091-1097.Google Scholar
Preston, T. & McMillan, D. C. (1988). Rapid sample throughput for biomedical stable isotope tracer studies. Biomedical and Environmental Mass Spectrometry 16, 229-235.Google Scholar
Preston, T. & Owens, N. J. P. (1983). Interfacing an automatic elemental analyser with an isotope ratio mass spectrometer: the potential for fully automated total nitrogen and nitrogen-15 analysis. Analyst 108, 971-977.Google Scholar
Preston, T. & Owens, N. J. P. (1985). Preliminary 13C measurements using a gas chromatograph interfaced to an isotope ratio mass spectrometer. Biomedical Mass Spectrometry 12, 510-513.Google Scholar
Preston, T., Robertson, I. & East, B. W. (1984). Simultaneous in vivo measurement of total body nitrogen by neutron-activation analysis and of protein turnover in humans and animals. Analyst 109, 357-359.Google Scholar
Prosser, S. J., Brookes, S. T., Linton, A. & Preston, T. (1991). Rapid, automated analysis of 13C and 18O of CO2 in gas samples by continuous-flow, isotope ratio mass spectrometry. Biological Mass Spectrometry 20, 724-730.Google Scholar
Rieley, G., Collier, R. J., Jones, D. M., Eglington, G., Eakin, P. A. & Fallick, A. E. (1991). Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds. Nature 353, 425-427.Google Scholar
Schwarcz, H. P. & Schoeninger, M. J. (1991). Stable isotope analyses in human nutritional ecology. Yearbook of Physical Anthropology 34, 283-321.Google Scholar
Silfer, J. A., Engel, M. N., Macko, S. A. & Jumeau, E. J. (1991). Stable carbon isotope analysis of amino acid enantiomers by conventional isotope ratio mass spectrometry and combined gas chromatography/isotope ratio mass spectrometry. Analytical Chemistry 63, 370-374.Google Scholar
Taggart, D. P., McMillan, D. C., Preston, T., Richardson, R., Burns, H. J. G. & Wheatley, D. J. (1991). Effects of cardiac surgery and intraoperative hypothermia on energy expenditure as measured by doubly labelled water. British Journal of Surgery 78, 237-241.CrossRefGoogle ScholarPubMed
Tissot, S., Normand, S., Guilly, R., Pachiaudi, C., Beylot, M., Laville, M., Chen, R., Mornex, R. & Riou, J. P. (1990). Use of a new gas chromatograph isotope ratio mass spectrometer to trace exogenous 13C labelled glucose at a very low level of enrichment in man. Diabetiologia 33, 449-456.Google Scholar
Yarasheski, K. E., Smith, K., Rennie, M. J. & Bier, D. M. (1992). Measurement of muscle protein fractional synthetic rate by capillary gas chromatography/combustion isotope ratio mass spectrometry. Biological Mass Spectrometry 21, 486-490.Google Scholar