Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-22T10:07:22.825Z Has data issue: false hasContentIssue false

Mammary-tissue amino acid transport systems

Published online by Cambridge University Press:  18 April 2008

D. B. Shennan
Affiliation:
Hannah Research Institute, Ayr KA6 5HL
I. D. Millar
Affiliation:
Hannah Research Institute, Ayr KA6 5HL
D. T. Calvert
Affiliation:
Hannah Research Institute, Ayr KA6 5HL
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Meeting the needs of lactation’
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Backwell, F. R. C., Bequette, B. J., Wilson, D., Calder, A. G., Metcalf, J. A., Wray-Cahen, D., MacRae, J. C., Beever, D. E. & Lobley, G. E. (1994). Utilization of dipeptides by the caprine mammary gland for protein synthesis. American Journal of Physiology 267, R1R6.Google ScholarPubMed
Banderali, U. & Roy, G. (1992). Anion channels for amino acids in MDCK cells. American Journal of Physiology 263, C1200C1207.CrossRefGoogle ScholarPubMed
Barcellos-Hoff, M. H., Aggelo, J., Ram, T. G. & Bissell, M. J. (1989). Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105, 223235.CrossRefGoogle ScholarPubMed
Barry, P. H. & Diamond, J. M. (1984). Effects of unstirred layers on membrane phenomena. Physiological Reviews 164, 763872.Google Scholar
Baumrucker, C. R. (1984). Cationic amino acid transport by bovine mammary tissue. Journal of Dairy Science 67, 25002506.Google Scholar
Baumrucker, C. R. (1985). Symposium: Nutrient uptake across the mammary gland. Amino acid transport systems in bovine mammary tissue. Journal of Dairy Science 68, 24362451.Google Scholar
Baumrucker, C. R., Pocius, P. A. & Riss, T. L. (1981). Glutathione utilization by lactating bovine mammary secretory tissue in vitro. Biochemical Journal 198, 243246.CrossRefGoogle ScholarPubMed
Bertran, J., Werner, A., Stange, G., Markovich, D., Biber, J., Tcstar, X., Zorzano, A., Palacin, M. & Murer, H. (1992). Expression of Na+-independent amino acid transport in Xenopus laevis oocytes by injection of rabbit kidney cortex mRNA. Biochemical Journal 281, 717723.CrossRefGoogle ScholarPubMed
Blatchford, D. R., Hendry, K. A. K., Turner, M. D., Burgoyne, R. D. & Wilde, C. J. (1995). Vectorial secretion by constitutive and regulated secretory pathways in mammary epithelial ceils. Epithelial and Cell Biology 4, 816.Google Scholar
Cabantchik, Z. I. & Greger, R. (1992). Chemical probes for anion transporters of mammalian cell membranes. American Journal of Physiology 262, C803C827.CrossRefGoogle ScholarPubMed
Calvert, D. T. & Shennan, D. B. (1996). Evidence for an interaction between cationic and neutral amino acids at the blood-facing aspect of the lactating rat mammary epithelium. Journal oj Dairy Research 63, 2533.Google Scholar
Chamberlin, M. E. & Strange, K. (1989). Anisosmotic cell volume regulation: a comparative view. American Journal of Physiology 257, C159C173.Google Scholar
Chen, L.-H. & Bissell, M. J. (1989). A novel regulatory mechanism for whey acidic protein gene expression. Cell Regulation 1, 4554.CrossRefGoogle ScholarPubMed
Clark, J. H., Spires, H. R. & Davis, C. L. (1978). Uptake and metabolism of nitrogenous compounds by the lactating mammary gland. Federation Proceedings 37, 12331238.Google Scholar
Deves, R., Chavez, F. & Boyd, C. A. R. (1992). Identification of a new transport system (y+L) in human erythrocytes that recognizes lysine and leucine with high affinity. Journal of Physiology 454, 491501.CrossRefGoogle ScholarPubMed
Ellory, J. C., Jones, S. E. M. & Young, J. D. (1981). Glycine transport in human erythrocytes. Journal of Physiology 320, 403422.Google Scholar
Furesz, T. C., Moe, A. J. & Smith, C. H. (1992). Two cationic amino acid transport systems in human placental basal plasma membranes. American Journal of Physiology 261, C246C252.CrossRefGoogle Scholar
Goldstein, L. & Brill, S. R. (1991). Volume-activated taurine efflux from skate erythrocytes: possible Band 3 involvement. American Journal of Physiology 260, R1014R1020.Google ScholarPubMed
Guinard, J. & Rulquin, H. (1994). Effect of graded levels of duodenal infusions of casein on mammary uptake in lactating cows. 2. Individual amino acids. Journal of Dairy Science 77, 33043315.CrossRefGoogle ScholarPubMed
Guinard, J. & Rulquin, H. (1995). Effects of graded amounts of duodenal infusions of methionine on the mammary uptake of major milk precursors in dairy cows. Journal of Dairy Science 78, 21962207.Google Scholar
Hayden, T. J. & Smith, S. V. (1981). Effects of bromocryptine and occlusion of nipples on prolactin receptor and lactose synthesase activity in the mammary gland of the lactating rat. Journal of Endocrinology 91, 225232.Google Scholar
Hoffmann, E. K. & Simonsen, L. O. (1989). Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiological Reviews 69, 315382.Google Scholar
Hollmann, K. H. (1974). Cytology and fine structure of the mammary gland. In Lactation, vol. 2, pp. 395 [Larson, B. L. and Smith, V. R. editors]. London: Academic Press.Google Scholar
Hurley, W. L., Blatchford, D. R., Hendry, K. A. K. & Wilde, C. J. (1994). Extracellular matrix and mouse mammary cell function: comparison of substrata in culture. In Vitro Tissue and Cell Biology 30A, 529538.CrossRefGoogle ScholarPubMed
Huxtable, R. J. (1992). Physiological actions of taurine. Physiological Reviews 72, 101163.CrossRefGoogle ScholarPubMed
Jackson, P. S. & Strange, K. (1993). Volume-Sensitive anion channels mediate swelling-activated inositol and taurine efflux. American Journal of Physiology 265, C1489C1500.Google Scholar
Jessen, H. (1994). Taurine and B-aianine transport in an established human kidney cell line derived from the proximal tubule. Biochimica et Biophysica Acta 1194, 4452.CrossRefGoogle Scholar
Kanai, Y. & Hediger, M. A. (1992). Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360, 467471.Google Scholar
Kanai, Y., Smith, C. R. & Hediger, M. A. (1994). A new family of neurotransmitter transporters: the high affinity glutamate transporters. FASEB Journal 8, 14501459.Google Scholar
Kinne, R. K. H. (1993). The role of organic osmolytes in osmoregulation: From bacteria to mammals. Journal of Experimental Zoology 265, 346355.Google Scholar
Kirk, K., Ellory, J. C. & Young, J. D. (1992). Transport of organic substrates via a volume-activated channel. Journal of Biological Chemistry 267, 2347523478.CrossRefGoogle Scholar
Kwon, H. M. & Handler, J. S. (1995). Cell volume regulated transporters of compatible osmolytes. Current Opinion in Cell Biology 131, 465471.Google Scholar
Lang, F., Ritter, M., Volkl, H. & Haussinger, D. (1993). The biological significance of cell volume. Renal Physiology and Biochemistry 16, 4865.Google ScholarPubMed
Linzell, J. L. & Peaker, M. (1971). Mechanism of milk secretion. Physiological Reviews 51, 564597.CrossRefGoogle ScholarPubMed
Mepham, T. B. (1982). Amino acid utilization by lactating mammary gland. Journal of Dairy Science 65, 287298.CrossRefGoogle ScholarPubMed
Mepham, T. B., Overthrow, J. I. & Short, A. H. (1985). Epithelial cell entry and exit competition amongst amino acids in the isolated perfused lactating mammary gland of guinea pig. In Carrier Mediated Transport of Solutes from Blood to Tissue, pp. 369372 [Yudilcvich, D. L. and Mann, G. E. editors]. London: Longman.Google Scholar
Metcalf, J. A., Sutton, J. D., Cockburn, J. E., Napper, D. J. & Beever, D. E. (1991). The influence of insulin and amino acid supply on amino acid uptake by the lactating bovine mammary gland. Journal of Dairy Science 74, 34123420.CrossRefGoogle ScholarPubMed
Millar, I. D., Calvert, D. T., Lomax, M. A. & Shennan, D. B. (1996a). The mechanism of L-glutamate transport by lactating rat mammary tissue. Biochimica el Biophysica Acta 1282, 200206.Google Scholar
Millar, I. D., Calvert, D. T., Lomax, M. A. & Shennan, D. B. (1996b). Interaction between anionic amino acids and the mammary tissue (Na+–glutamate) cotransporter. Biochemical Society Transactions 24, S333.CrossRefGoogle ScholarPubMed
Millar, I. D., Lomax, M. A. & Shennan, D. B. (1996c). Mammary tissue protein synthesis is regulated by ceil volume. Biochemical Society Transactions 24, S335.Google Scholar
Neville, M. C., Lobitz, C. J., Ripoll, E. A. & Tinney, C. (1980). The sites of α-aminoisobutyric acid uptake in normal mammary gland and ascites tumor cells. Journal of Biological Chemistry 255, 73117316.Google Scholar
Pines, G., Danbolt, N. C., Bjoras, M., Zhang, Y., Bendahan, A., Eide, L., Koepsell, H., Storm-Mathisen, J., Seeberg, E. & Kanner, B. L. (1992). Cloning and expression of a rat brain L-glutamate transporter. Nature 360, 464467.CrossRefGoogle ScholarPubMed
Pocius, P. A., Clark, J. H. & Baumrucker, C. R. (1981). Glutathione in bovine blood: possible source of amino acids for milk protein synthesis. Journal of Dairy Science 64, 15511554.CrossRefGoogle ScholarPubMed
Rassin, D. K., Sturman, J. A. & Gaull, G. E. (1978). Taurine and other free amino acids in milk of man and other species. Early Human Development 2, 113.Google Scholar
Rillema, J. A., Golden, K. & Jenkins, M. A. (1992). Effects of prolactin on AIB uptake in mouse mammary gland explants. American Journal of Physiology 262, E402E405.Google ScholarPubMed
Sarkadi, B. & Parker, J. C. (1991). Activation of ion transport pathways by changes in cell volume. Biochimica et Biophysica Acta 1071, 404427.Google Scholar
Shennan, D. B. (1989). A study of sulphate transport by lactating rat mammary tissue: evidence for anion exchange. Comparative Biochemistry and Physiology 92A, 145150.Google Scholar
Shennan, D. B. (1990). Mini review: mechanisms of mammary gland ion transport. Comparative Biochemistry and Physiology 97A, 317324.Google Scholar
Shennan, D. B. (1992). K+ and Cl- transport by mammary secretory cell apical membrane vesicles isolated from milk. Journal of Dairy Research 59, 339348.Google Scholar
Shennan, D. B. (1995). Identification of a high affinity taurine transporter which is not dependent on chloride. Bioscience Reports 15, 231239.Google Scholar
Shennan, D. B. & McNeillie, S. A. (1994a). Characteristics of α-aminoisobutyric acid transport by the lactating rat mammary gland. Journal of Dairy Research 61, 919.CrossRefGoogle ScholarPubMed
Shennan, D. B. & McNeillie, S. A. (1994b). High affinity (Na++Cl-)-dependent taurine transport by lactating mammary tissue. Journal of Dairy Research 61, 335343.CrossRefGoogle ScholarPubMed
Shennan, D. B. & McNeillie, S. A. (1994c). Milk accumulation down regulates amino acid uptake via systems A and L by lactating mammary tissue. Hormone and Metabolic Research 26, 611.CrossRefGoogle ScholarPubMed
Shennan, D. B., McNeillie, S. A. & Curran, D. E. (1994a). The effect of a hyposmotic shock on amino acid efflux from lactating rat mammary tissue: stimulation of taurine and glycine efflux via a pathway distinct from anion exchange and volume-activated anion channels. Experimental Physiology 79, 797808.Google Scholar
Shennan, D. B., McNeillie, S. A., Jamicson, E. A. & Calvert, D. T. (1994b). Lysine transport in lactating rat mammary tissue: evidence for an interaction between cationic and neutral amino acids. Acta Physiologica Scaninavica 151, 461466.CrossRefGoogle ScholarPubMed
Shennan, D. B. & Madon, R. J. (1991). An effect of prolactin on K+ uptake by lactating rat mammary tissue. Hormone and Metabolic Research 23, 293294.Google Scholar
Storck, T., Schulte, S., Hofmann, K. & Stoffel, W. (1992). Structure, expression and functional analysis of a Na+-dependent elutamate aspartate transporter from rat brain. Proceedings of the National Academy of Sciences USA 89, 1095910995.Google Scholar
Sturman, J. A., Rassin, D. K. & Gaull, G. E. (1977). Taurine in developing rat brain: transfer of [35S]taurine to pups via the milk. Pediatric Research 11, 2833.CrossRefGoogle ScholarPubMed
Van Winkle, L. J., Campione, A. L. & Gorman, J. M. (1988). Na+-independent transport of basic and zwitterionic amino acids in mouse blastocyst by a shared system and by processes which distinguish between these substrates. Journal of Biological Chemistry 263, 31503163.CrossRefGoogle ScholarPubMed
Vina, J., Puertes, I. R., Saez, G. T. & Vina, J. R. (1981a). Role of prolactin in amino acid uptake by the lactating mammary gland of the rat. FEBS Letters 126, 250252.CrossRefGoogle ScholarPubMed
Vina, J. R., Puertes, I. R. & Vina, J. (1981b). Effect of premature weaning of amino acid uptake by the mammary gland of lactating rats. Biochemical Journal 200, 705708.CrossRefGoogle ScholarPubMed
Wilde, C. J. & Peaker, M. (1990). Autocrine control in milk secretion. Journal of Agricultural Science, Cambridge 114, 235238.CrossRefGoogle Scholar
Yudilevich, D. L. & Mann, G. E. (1982). Unidirectional uptake of substrates at the blood side of secretory epithelia: Stomach, salivary gland, pancreas. Federation Proceedings 41, 30453053.Google Scholar
Yudilevich, D. L. & Sweiry, J. (1985). Transport of amino acids in the placenta. Biochimica et Biophysica Acta 822, 169201.Google Scholar