Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T22:53:42.613Z Has data issue: false hasContentIssue false

Intracellular calcium ions and intramitochondrial Ca2+ in the regulation of energy metabolism in mammalian tissues

Published online by Cambridge University Press:  28 February 2007

James G. McCormack
Affiliation:
Department of Biochemistry, University of Leeds, Leeds LS2 9JT
Richard M. Denton
Affiliation:
Department of Biochemistry, University of Bristol Medical School, University Walk, Bristol BS8 1TD
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Intracellular Calcium in the Control of Metabolism’
Copyright
Copyright © The Nutrition Society 1990

References

Akerman, K. E. O. & Nicholls, D. G. (1983). Physiological and Bioenergetic aspects of mitochondrial calcium transport. Reviews in Physiology, Biochemistry and Pharmacology 95, 149201.CrossRefGoogle Scholar
Allen, D. G., Eisner, D. A., Morris, P. G., Pirolo, J. C. & Smith, G. L. (1986). Metabolic consequences of increasing intracellular calcium and force production in perfused ferret hearts. Journal of Physiology 376, 121141.CrossRefGoogle ScholarPubMed
Altin, J. G. & Bygrave, F. L. (1986). Synergistic stimulation of Ca2+ uptake by Ca2+ -mobilizing hormones in the perfused rat liver. A role for mitochondria in long term Ca2+ homeostasis. Biochemical Journal 238, 653661.CrossRefGoogle Scholar
Aprille, J. R., Nosek, M. T. & Brennan, W. A. (1982). Adenine nucleotide content of liver mitochondria increases after glucagon treatment of rats or isolated hepatocytes. Biochemical and Biophysical Research Communications 108, 834839.CrossRefGoogle ScholarPubMed
Ashour, B. & Hansford, R. G. (1983). Effect of fatty acids and ketones on the activity of pyruvate dehydrogenase in skeletal muscle mitochondria. Biochemical Journal 214, 725736.CrossRefGoogle ScholarPubMed
Assimacopoulos-Jeannet, F., McCormack, J. G. & Jeanrenaud, B. (1983). Effect of phenylephrine on pyruvate dehydrogenase activity in rat hepatocytes and its interaction with insulin and glucagon. FEBS Letters 159, 8389.CrossRefGoogle ScholarPubMed
Assimacopoulos-Jeannet, F., McCormack, J. G. & Jeanrenaud, B. (1986). Vasopressin and/or glucagon rapidly increases mitochondrial calcium and oxidative enzyme activities in the perfused rat liver. Journal of Biological Chemistry 261, 87998804.CrossRefGoogle ScholarPubMed
Balaban, R. S. & Blum, J. J. (1982). Hormone-induced changes in NADH fluorescence and O2 consumption of rat hepatocytes. American Journal of Physiology 242, C172–C177.CrossRefGoogle ScholarPubMed
Balaban, R. S., Kantor, H. L., Katz, L. A. & Briggs, R. W. (1986). Relation between work and phosphometabolites in the in vivo paced mammalian heart. Science 232, 11211123.CrossRefGoogle Scholar
Baumgarten, E., Brand, M. D. & Pozzan, T. (1983). Mechanism of activation of pyruvate dehydrogenase by mitogens in pig lymphocytes. Biochemical Journal 216, 359369.CrossRefGoogle ScholarPubMed
Blackmore, P. F., Hughes, B. P., Charest, R., Shuman, E. A. & Exton, J. H. (1983). Time course of α1-adrenergic and vasopressin actions on phosphorylase activation, calcium efflux, pyridine nucleotide reduction, and respiration in hepatocytes. Journal of Biological Chemistry 258, 1048810494.CrossRefGoogle ScholarPubMed
Brand, M. D. & Murphy, M. P. (1987). Control of electron flux through the respiratory chain in mitochondria and cells. Biological Reviews 62, 141193.CrossRefGoogle ScholarPubMed
Brawand, E., Folly, G. & Walter, P. (1980). Relation between extra- and intramitochondrial ATP/ADP ratios in rat liver mitochondria. Biochimica et Biophysica Acta 590, 285287.CrossRefGoogle ScholarPubMed
Capponi, A. M., Rossier, M. F., Davies, E. & Vallotton, M. B. (1988). Calcium stimulates steroidogenesis in permeabilised bovine adrenal cortical cells. Journal of Biological Chemistry 263, 1611316117.CrossRefGoogle Scholar
Carafoli, E. (1987). Intracellular calcium homeostasis. Annual Reviews in Biochemistry 56, 395433.CrossRefGoogle ScholarPubMed
Chance, B., Leigh, J. S., Kent, J., McCully, K., Nioka, S., Clark, B. J., Maris, J. M. & Graham, T. (1986). Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance. Proceedings of the National Academy of Sciences, USA 83, 94589462.CrossRefGoogle ScholarPubMed
Chance, B. & Williams, G. R. (1956). The respiratory chain and oxidative phosphorylation. Advances in Enzymology 17, 65134.Google ScholarPubMed
Chappell, J. B. & Robinson, B. H. (1968). Penetration of the mitochondrial membrane by tricarboxylic acid anions. Biochemical Society Symposia 27, 123133.Google ScholarPubMed
Cobbold, P. H. & Rink, T. J. (1987). Fluorescence and bioluminescence measurement of cytosolic free Ca2+. Biochemical Journal 248, 313328.CrossRefGoogle Scholar
Cohen, P. (1978). The role of cyclic-AMP-dependent protein kinase in the regulation of glycogen metabolism in mammalian skeletal muscle. Current Topics in Cell Regulation 14, 117196.CrossRefGoogle ScholarPubMed
Coore, H. G., Denton, R. M., Martin, B. R., & Randle, P. J. (1971). Regulation of adipose tissue pyruvate dehydrogenase by insulin and other hormones. Biochemical Journal 125, 115127.CrossRefGoogle ScholarPubMed
Corkey, B. E., Duszynski, J., Rich, T. L., Matschinsky, B. & Williamson, J. R. (1986). Regulation of free and bound magnesium in rat hepatocytes and isolated mitochondria. Journal of Biological Chemistry 261, 25672574.CrossRefGoogle ScholarPubMed
Crompton, M. (1985). The regulation of mitochondrial calcium transport in heart. Current Topics in Membrane Transport 25, 231276.CrossRefGoogle Scholar
Crompton, M., Costi, A. & Hayat, L. (1987). Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Biochemical Journal 245, 915918.CrossRefGoogle ScholarPubMed
Crompton, M., Kessar, P. & Al-Nasser, I. (1983). The α-adrenergic-mediated activation of the cardiac mitochondrial Ca2+ uniporter and its role in the control of intramitochondrial Ca2+ in vivo. Biochemical Journal 216, 333342.CrossRefGoogle ScholarPubMed
Davidson, A. M. & Halestrap, A. P. (1987). Liver mitochondrial pyrophosphate concentration is increased by Ca2+ and regulated the intramitochondrial volume and adenine nucleotide content. Biochemical Journal 246, 715723.CrossRefGoogle ScholarPubMed
Davidson, A. M. & Halestrap, A. P. (1988). Inorganic pyrophosphate is located primarily in the mitochondria of the hepatocyte and increases in parallel with the decrease in light-scattering induced by gluconeogenic hormones, butyrate and ionophore A23187. Biochemical Journal 254, 379384.CrossRefGoogle ScholarPubMed
Davidson, A. M. & Halestrap, A. P. (1989). Inhibition of mitochondrial matrix inorganic pyrophosphates by physiological [Ca2+] and its role in the hormonal regulation of mitochondrial matrix volume. Biochemical Journal 258, 817821.CrossRefGoogle Scholar
Davis, M. H., Altshuld, R. A., Jung, D. W. & Brierley, G. P. (1987). Estimation of intramitochondrial pCa and pH by fura-2 and 2, 7-biscarboxylethyl-5(6)-carboxyfluorescein (BCECF) fluorescence. Biochemical and Biophysical Research Communications 149, 4045.CrossRefGoogle Scholar
Denton, R. M. & McCormack, J. G. (1980). On the role of the calcium transport cycle in heart and other mammalian mitochondria. FEBS Letters 119, 18.CrossRefGoogle ScholarPubMed
Denton, R. M. & McCormack, J. G. (1985). Ca2+ transport by mammalian mitochondria and its role in hormone action. American Journal of Physiology 249, E543–E554.Google ScholarPubMed
Denton, R. M., McCormack, J. G. & Edgell, N. J. (1980). Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+ -stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochemical Journal 190, 107117.CrossRefGoogle ScholarPubMed
Denton, R. M., McCormack, J. G. & Marshall, S. E. (1984). Persistence of the effect of insulin on pyruvate dehydrogenase activity in rat white and brown adipose tissue during the preparation and subsequent incubation of mitochondria. Biochemical Journal 217, 441452.CrossRefGoogle Scholar
Denton, R. M., Randle, P. J. & Martin, B. R. (1972). Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase. Biochemical Journal 128, 161163.CrossRefGoogle ScholarPubMed
Denton, R. M., Richards, D. A. & Chin, J. G. (1978). Calcium ions and the regulation of NAD-linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues. Biochemical Journal 176, 894906.CrossRefGoogle ScholarPubMed
Exton, J. H. (1980). Mechanisms involved in α-adrenergic phenomena: role of calcium ions in actions of catecholamines in liver and other tissues. American Journal of Physiology 238, E3–E12.Google ScholarPubMed
Exton, J. H. (1988). Mechanisms of action of Ca-mobilising agonists: some variations on a young theme. FASEB Journal 2, 26702676.CrossRefGoogle Scholar
Fiskum, G. & Lehninger, A. L. (1982). Mitochondrial regulation of intracellular calcium. In Calcium and Cell Function, vol. 2, pp. 3980 [Cheung, W. Y., editor]. New York: Academic PressCrossRefGoogle Scholar
From, A. H. L., Petein, M. A., Michurski, S. P., Zimmer, S. D. & Ugurbil, K. (1986). 31P-NMR studies of respiratory regulation in the intact myocardium. FEBS Letters 206, 257261.CrossRefGoogle ScholarPubMed
Fuller, S. J. & Randle, P. J. (1984). Reversible phosphorylation of pyruvate dehydrogenase in rat skeletal muscle mitochondria. Effects of starvation and diabetes. Biochemical Journal 219, 635646.CrossRefGoogle ScholarPubMed
Gibbins, J. M., Denton, R. M. & McCormack, J. G. (1985). Evidence that noradrenaline increases pyruvate dehydrogenase activity and decreases acetyl-CoA carboxylase activity in rat interscapular brown adipose tissue in vivo. Biochemical Journal 228, 751755.CrossRefGoogle ScholarPubMed
Gibbs, C. (1985). The cytoplasmic phosphorylation potential. Its possible role in the control of myocardial respiration and cardiac contractility. Journal of Molecular and Cellular Cardiology 17, 727731.CrossRefGoogle ScholarPubMed
Goldstone, T. P., Duddridge, R. J. & Crompton, M. (1983). The activation of Na+ -dependent efflux of Ca2+ from liver mitochondria by glucagon and β-adrenergic agonists. Biochemical Journal 210, 463472.CrossRefGoogle ScholarPubMed
Grapengiesser, E., Gylfe, E. & Hellman, B. (1988). Glucose-induced oscillations of cytoplasmic Ca2+ in the pancreatic β-cell. Biochemical and Biophysical Research Communications 151, 12991304.CrossRefGoogle ScholarPubMed
Gunter, T. E., Restrepo, D. & Gunter, K. K. (1988). Conversion of esterified fura-2 and indo-1 to Ca2+ -sensitive forms by mitochondria. American Journal of Physiology 255, C304–C310.CrossRefGoogle ScholarPubMed
Hagg, S. A., Taylor, S. I. & Ruderman, N. B. (1976). Glucose metabolism in perfused skeletal muscle. Pyruvate dehydrogenase activity in starvation, diabetes and exercise. Biochemical Journal 158, 203210.CrossRefGoogle ScholarPubMed
Halestrap, A. P. (1989). The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochimica et Biophysica Acta 973, 355382.CrossRefGoogle ScholarPubMed
Hansford, R. G. (1980). Control of mitochondrial substrate oxidation. Current Topics in Bioenergetics 10, 217277.CrossRefGoogle Scholar
Hansford, R. G. (1985). Relation between mitochondrial calcium transport and control of energy metabolism. Reviews in Physiology, Biochemistry and Pharmacology 102, 172.CrossRefGoogle ScholarPubMed
Hansford, R. G. (1987). Relation between cytosolic free Ca2+ concentration and the control of pyruvate dehydrogenase in isolated cardiac myocytes. Biochemical Journal 241, 145151.CrossRefGoogle ScholarPubMed
Hansford, R. G. & Castro, F. (1982). Intramitochondrial and extramitochondrial free calcium ion concentration of suspensions of heart mitochondria with very low, plausibly physiological contents of total calcium. Journal of Bioenergetics and Biomembranes 14, 361376.CrossRefGoogle ScholarPubMed
Hansford, R. G. & Castro, F. (1985). Roles of Ca2+ in pyruvate dehydrogenase interconversion in brain mitochondria and synaptosomes. Biochemical Journal 227, 129153.CrossRefGoogle ScholarPubMed
Haussinger, D. & Sies, H. (1984). Effect of phenylephrine on glutamate and glutamine metabolism in isolated perfused rat liver. Biochemical Journal 221, 651658.CrossRefGoogle ScholarPubMed
Hems, D. A., McCormack, J. G. & Denton, R. M. (1978). Activation of pyruvate dehydrogenase in the perfused rat liver by vasopressin. Biochemical Journal 176, 627629.CrossRefGoogle ScholarPubMed
Hennig, G., Loffler, G. & Wieland, O. H. (1975). Active and inactive forms of pyruvate dehydrogenase in skeletal muscle as related to the metabolic and functional state of the muscle cell. FEBS Letters 59, 142145.CrossRefGoogle Scholar
Hiraoka, T., Debuysere, M. & Olson, M. S. (1980). Studies of the effects of β-adrenergic agonists on the regulation of pyruvate dehydrogenase in the perfused rat heart. Journal of Biological Chemistry 255, 76047609.CrossRefGoogle ScholarPubMed
Johnston, J. D. & Brand, M. D. (1989). Sub-micromolar concentrations of extramitochondrial Ca2+ stimulate the rate of citrulline synthesis by rat liver mitochondria. Biochemical Journal 257, 285288.CrossRefGoogle ScholarPubMed
Katz, L. A., Koretsky, A. P. & Balaban, R. S. (1987). Respiratory control in the glucose perfused heart. A 31P-NMR and NADH fluorescence study. FEBS Letters 221, 270276.CrossRefGoogle Scholar
Katz, L. A., Koretsky, A. P. & Balaban, R. S. (1988). Activation of dehydrogenase activity and cardiac respiration: a 31P-NMR study. American Journal of Physiology 255, H185–H188.Google ScholarPubMed
Katz, L. A., Swain, J. A., Portman, M. A. & Balaban, R. S. (1989). Relation between phosphate metabolites and oxygen consumption in heart in vivo. American Journal of Physiology 256, H265–H274.Google ScholarPubMed
Kilgour, E. & Vernon, R. G. (1987). Catecholamine activation of pyruvate dehydrogenase in white adipose tissue of the rat in vivo. Biochemical Journal 241, 415419.CrossRefGoogle ScholarPubMed
Komulainen, H. & Bondy, S. L. (1987). The estimation of free calcium within synaptosomes and mitochondria with fura-2: comparison to quin-2. Neurochemistry International 10, 5564.CrossRefGoogle ScholarPubMed
Koretsky, A. P. & Balaban, R. S. (1987). Changes in pyridine nucleotides levels alter oxygen consumption and extra-mitochondrial phosphates in isolated mitochondria: a 31P-NMR and NAD(P)H fluorescence study. Biochimica et Biophysica Acta 893, 398408.CrossRefGoogle ScholarPubMed
Koretsky, A. P., Katz, L. A. & Balaban, R. S. (1987). Determination of pyridine nucleotide fluorescence from the perfused heart using an internal standard. American Journal of Physiology 253, H856–H862.Google ScholarPubMed
Krause, E.-G. & Beyerdorfer, I. (1988). Heart cycle-related activation of pyruvate dehydrogenase in canine myocardium in vivo. Journal of Molecular and Cellular Cardiology 20, (Suppl. V), S.54.Google Scholar
Lakin-Thomas, P. L. & Brand, M. D. (1987). Mitogenic stimulation transiently increases the exchangeable mitochondrial calcium pool in rat thymocytes. Biochemical Journal 246, 173177.CrossRefGoogle ScholarPubMed
Lakin-Thomas, P. L. & Brand, M. D. (1988). Stimulation of respiration by mitogens in rat thymocytes is independent of mitochondrial calcium. Biochemical Journal 256, 167173.CrossRefGoogle ScholarPubMed
Lukacs, G. L. & Kapus, A. (1987). Measurement of the matrix free Ca2+ concentration in heart mitochondria by entrapped fura-2 and quin-2. Biochemical Journal 248, 609613.CrossRefGoogle Scholar
Lukacs, G. L., Kapus, A. & Fonyo, A. (1988). Parallel measurements of oxoglutarate dehydrogenase activity and matrix free Ca2+ in fura-2 loaded heart mitochondria. FEBS Letters 229, 219223.CrossRefGoogle ScholarPubMed
Ma, S. W. Y. & Foster, D. O. (1984). Redox state of brown adipose tissue as a possible determinant of its blood flow. Canadian Journal of Physiology and Pharmacology 62, 949956.CrossRefGoogle ScholarPubMed
McCormack, J. G. (1985 a). Characterisation of the effects of Ca2+ on the intramitochondrial Ca2+ -sensitive enzymes from rat liver and within rat liver mitochondria. Biochemical Journal 231, 581595.CrossRefGoogle ScholarPubMed
McCormack, J. G. (1985 b). Studies on the activation of rat liver pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase by adrenaline and glucagon. Role of increases in intramitochondrial Ca2+ concentration. Biochemical Journal 231, 597608.CrossRefGoogle ScholarPubMed
McCormack, J. G., Assimacopoulos-Jeannet, F. D. & Denton, R. M. (1986). The effects of Ca-mobilising hormones on the intramitochondrial Ca2+ -sensitive dehydrogenases in the liver: do these hormones act by increasing or decreasing intramitochondrial Ca2+? In Hormonal Regulation of Gluconeogenesis, vol. 3, pp. 8898 [Kraus-Friedmann, N., editor]. Cleveland: CRC Press Inc.Google Scholar
McCormack, J. G., Bromidge, E. S. & Dawes, N. J. (1988). Characterisation of the effects of Ca2+ on the intramitochondrial Ca2+ -sensitive dehydrogenases within intact rat-kidney mitochondria. Biochimica et Biophysica Acta 934, 282292.CrossRefGoogle ScholarPubMed
McCormack, J. G., Browne, H. M. & Dawes, N. J. (1989). Studies on mitochondrial Ca2+ -transport and matrix Ca2+ using fura-2-loaded rat heart mitochondria. Biochimica et Biophysica Acta 973, 420427.CrossRefGoogle ScholarPubMed
McCormack, J. G. & Denton, R. M. (1976). Evidence that fatty acid synthesis in the interscapular brown adipose tissue of cold-adapted rats is increased in vivo by insulin by mechanisms involving parallel activation of pyruvate dehydrogenase and acetyl-coenzyme A carboxylase. Biochemical Journal 166, 627630.CrossRefGoogle Scholar
McCormack, J. G. & Denton, R. M. (1979). The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochemical Journal 180, 533544.CrossRefGoogle ScholarPubMed
McCormack, J. G. & Denton, R. M. (1980). Role of calcium ions in the regulation of intramitochondrial metabolism. Properties of the Ca2+ -sensitive dehydrogenases within intact uncoupled mitochondria from the white and brown adipose tissue of the rat. Biochemical Journal 190, 95105.CrossRefGoogle Scholar
McCormack, J. G. & Denton, R. M. (1981 a). The activation of pyruvate dehydrogenase in the perfused rat heart by adrenaline and other iontropic agents. Biochemical Journal 194, 639643.CrossRefGoogle Scholar
McCormack, J. G. & Denton, R. M. (1981 b). A comparative study of the regulation by Ca2+ of the activities of the 2-oxoglutarate dehydrogenase complex and NAD-isocitrate dehydrogenase from a variety of sources. Biochemical Journal 196, 619624.CrossRefGoogle ScholarPubMed
McCormack, J. G. & Denton, R. M. (1984). Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Evidence from studies with isolated mitochondria that adrenaline activates the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes by increasing the intramitochondrial concentration of Ca2+. Biochemical Journal 218, 235247.CrossRefGoogle ScholarPubMed
McCormack, J. G. & Denton, R. M. (1986 a). Ca2+ as a second messenger within mitochondria. Trends in Biochemical Sciences 11, 258262.CrossRefGoogle Scholar
McCormack, J. G. & Denton, R. M. (1986 b). Ca2+ ions as a link between functional demands and mitochondrial metabolism in the heart. In The Regulation of Heart Function. Basic Concepts and Clinical Applications, pp. 186200 [Rupp, H., editor]. New York: Thieme Inc.Google Scholar
McCormack, J. G. & Denton, R. M. (1989). Influence of Ca2+ ions on mammalian intramitochondrial dehydrogenases. Methods in Enzymology 174, 95118.CrossRefGoogle Scholar
McCormack, J. G. & England, P. J. (1983). Ruthenium red inhibits the activation of pyruvate dehydrogenase caused by positive inotropic agents in the perfused rat heart. Biochemical Journal 214, 581585.CrossRefGoogle ScholarPubMed
McMillin, J. B. & Pauly, D. F. (1988). Control of mitochondrial respiration in muscle. Molecular and Cellular Biochemistry 81, 121129.CrossRefGoogle ScholarPubMed
Marban, E., Rink, T. J., Tsein, R. W. & Tsein, R. Y. (1980). Free calcium in heart muscle at rest and during contraction measured with Ca2+ -sensitive microelectrodes. Nature 286, 845850.CrossRefGoogle ScholarPubMed
Marshall, S. E., McCormack, J. G. & Denton, R. M. (1984). Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat epididymal adipose tissue. Evidence against a role for Ca2+ in the activation of pyruvate dehydrogenase by insulin. Biochemical Journal 218, 249260.CrossRefGoogle ScholarPubMed
Mauger, J. P., Poggioli, J. & Claret, M. (1985). Synergistic stimulation of the Ca2+ influx in rat hepatocytes by glucagon and the Ca2+ -linked hormones vasopressin and angiotensin II. Journal of Biological Chemistry 260, 1163511642.CrossRefGoogle ScholarPubMed
Monck, J. R., Reynolds, E. E., Thomas, A. P. & Williamson, J. R. (1988). Novel kinetics of single cell Ca2+ transients in stimulated hepatocytes and A10 cells measured using fura-2 and fluorescence-video microscopy. Journal of Biological Chemistry 263, 45694575.CrossRefGoogle Scholar
Moore, A. L. & Akerman, K. E. O. (1984). Calcium and plant organelles. Plant, Cell and Environment 7, 423429.CrossRefGoogle Scholar
Moreno-Sanchez, R. & Hansford, R. G. (1988). Dependence of cardiac mitochondrial pyruvate dehydrogenase activity on intramitochondrial free Ca2+ concentration. Biochemical Journal 256, 403412.CrossRefGoogle ScholarPubMed
Neely, J. R., Denton, R. M., England, P. J. & Randle, P. J. (1972). The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart. Biochemical Journal 128, 147159.CrossRefGoogle ScholarPubMed
Nicholls, D. G. (1984). Mechanisms of energy transduction. New Comprehensive Biochemistry 9, 2948.CrossRefGoogle Scholar
Patel, T. B. & Olson, M. S. (1986). Regulation of gluconeogenesis from pyruvate and lactate in the isolated perfused rat liver. Biochimica et Biophysica Acta 888, 315324.Google ScholarPubMed
Patel, T. B., Sambasivarao, D. & Rashed, H. M. (1988). Role of calcium in synaptosomal substrate oxidation. Archives of Biochemistry and Biophysics 264, 368375.CrossRefGoogle ScholarPubMed
Pullman, M. E. & Munroy, G. C. (1963). A naturally occurring inhibitor of mitochondrial adenosine triphosphatase. Journal of Biological Chemistry 238, 37623769.CrossRefGoogle ScholarPubMed
Quinlan, P. T., Thomas, A. P., Armston, A. E. & Halestrap, A. P. (1983). Measurement of the intramitochondrial volume in hepatocytes without cell disruption and its elevation by hormones and valinomycin. Biochemical Journal 214, 395404.CrossRefGoogle ScholarPubMed
Rashed, H. M., Waller, F. M. & Patel, T. B. (1988). Hormonal regulation of the 2-oxoglutarate dehydrogenase complex in the isolated perfused rat liver. Journal of Biological Chemistry 263, 57005706.CrossRefGoogle ScholarPubMed
Rasmussen, H. & Barrett, P. Q. (1984). Calcium messenger system: an integrated view. Physiological Reviews 64, 938978.CrossRefGoogle ScholarPubMed
Reers, M., Kelly, R. A. & Smith, T. W. (1989). Calcium and protein activities in rat cardiac mitochondria. Effect of matrix environment on behaviour of fluorescent probes. Biochemical Journal 257, 131142.CrossRefGoogle Scholar
Rutter, G. A. & Denton, R. M. (1988). Regulation of NAD+ -linked isocitrate dehydrogenase by Ca2+ ions with toluene-permeabilised rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios. Biochemical Journal 252, 181189.CrossRefGoogle Scholar
Scrutton, M. C. & White, M. D. (1974). Pyruvate carboxylase. Inhibition of the mammalian and avian liver enzymes by α-ketoglutarate and L-glutamate. Journal of Biological Chemistry 249, 54055415.CrossRefGoogle ScholarPubMed
Seydoux, J., Rohner-Jeanrenaud, F., Assimacopoulos-Jeannet, F., Jeanrenaud, B. & Girardier, L. (1984). Functional disconnection of brown adipose tissue in hypothalmic obesity in rats. Pflüger's Archives 390, 14.CrossRefGoogle Scholar
Siess, E. A., Brocks, D. G. & Wieland, O. H. (1978). Comparative studies of the influence of hormones on the metabolic compartmentation of isolated liver cells during gluconeogenesis from lactate. Biochemical Society Transactions 6, 11391144.CrossRefGoogle ScholarPubMed
Sistare, F. D. & Haynes, R. C. (1985). The interaction between the cytosolic pyridine nucleotide redox potential and gluconeogenesis from lactate/pyruvate in isolated rat hepatocytes. Implications for investigations of hormone action. Journal of Biological Chemistry 260, 1274812753.CrossRefGoogle ScholarPubMed
Soboll, S. & Scholtz, R. (1986). Control of energy metabolism by glucagon and adrenaline in perfused rat liver. FEBS Letters 205, 109112.CrossRefGoogle ScholarPubMed
Somlyo, A. P., Bond, M. & Somlyo, A. V. (1985). Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Nature 314, 622625.CrossRefGoogle ScholarPubMed
Staddon, J. M. & McGivan, J. D. (1984). Distinct effects of glucagon and vasopressin on proline metabolism in isolated hepatocytes. The role of oxoglutarate dehydrogenase. Biochemical Journal 217, 477483.CrossRefGoogle ScholarPubMed
Staddon, J. M. & McGivan, J. D. (1985). Ca2+ -dependent activation of oxoglutarate dehydrogenase by vasopressin in isolated hepatocytes. Biochemical Journal 225, 327333.CrossRefGoogle ScholarPubMed
Steinberg, S. F., Bilezikian, J. P. & Al-Awqati, A. (1987). Fura-2 fluorescence is localised to mitochondria in endothelial cells. American Journal of Physiology 253, C744–C747.CrossRefGoogle ScholarPubMed
Strzelecki, T., Strzelecka, D., Koch, C. D. & Lanoue, K. F. (1988). Sites of action of glucagon and other Ca2+ mobilising hormones on the malate-aspartate cycle. Archives of Biochemistry and Biophysics 264, 310320.CrossRefGoogle ScholarPubMed
Sugano, T., Shiota, M., Tanaka, T., Miyamae, Y., Shimada, M. & Oshino, N. (1980). Intracellular redox state and stimulation of gluconeogenesis by glucagon and norepinephrine in the perfused rat liver. Journal of Biochemistry (Tokyo) 87, 153166.CrossRefGoogle ScholarPubMed
Taylor, W. M., Prpic, V., Exton, J. H. & Bygrave, F. L. (1980). Stable changes to calcium fluxes in mitochondria isolated from rat livers perfused with α-adrenergic agonists and with glucagon. Biochemical Journal 188, 443450.CrossRefGoogle ScholarPubMed
Taylor, W. M., Van De Pol, E. & Bygrave, F. L. (1986 a). The stimulation of tricarboxylic acid-cycle flux by α-adrenergic agonists in perfused rat liver. Biochemical Journal 233, 321324.CrossRefGoogle ScholarPubMed
Taylor, W. M., Van De Pol, E. & Bygrave, F. L. (1986 b). On the stimulation of respiration by α-adrenergic agonists in perfused rat liver. European Journal of Biochemistry 155, 319322.CrossRefGoogle ScholarPubMed
Thienen, W. D. V. & Davis, E. J. (1981). The effects of energetic steady state, pyruvate concentration, and octanoloy-(-)-carnitine on the relative rates of carboxylation and decarboxylation of pyruvate by rat liver mitochondria. Journal of Biological Chemistry 256, 83718378.CrossRefGoogle Scholar
Titheradge, M. A. & Haynes, R. C. (1980). The hormonal stimulation of ureagenesis in isolated hepatocytes through increases in mitochondrial ATP production. Archives and Biochemistry and Biophysics 201, 4555.CrossRefGoogle Scholar
Tullson, P. & Goldstein, L. (1982). Acidosis stimulation of α-ketoglutarate oxidation: possible mediation by Ca2+. FEBS Letters 150, 197200.CrossRefGoogle ScholarPubMed
Unitt, J. F., McCormack, J. G., Reid, D., MacLachlan, L. K. & England, P. J. (1989). Direct evidence for a role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in the stimulated rat heart. Studies using 31p-n.m.r. and ruthenium red. Biochemical Journal 262, 293301.CrossRefGoogle ScholarPubMed
Wendt-Gallitelli, M. F. (1986). Ca-pools involved in the regulation of cardiac contraction under positive inotropy. X-ray microanalysis on rapidly-frozen ventricular muscle of guinea pig. Basic Research in Cardiology 81, 2532.Google ScholarPubMed
Williamson, J. R. (1965). Possible role of citrate in the control of epinephrine-stimulated glycogenolysis in rat heart. Nature 206, 473475.CrossRefGoogle ScholarPubMed
Williamson, J. R., Cooper, R. H. & Hoek, J. B. (1981). Role of calcium in the hormonal control of liver metabolism. Biochimica et Biophysica Acta 639, 243295.CrossRefGoogle Scholar
Williamson, J. R. & Hansen, C. A. (1987). Signalling systems in stimulus-response coupling. Biochemical Actions of Hormones 14, 2980.CrossRefGoogle Scholar
Woods, N. M., Cuthbertson, K. S. R. & Cobbold, P. H. (1986). Repetitive transient rises in cytosolic free calcium in hormone-stimulated hepatocytes. Nature 319, 600602.CrossRefGoogle Scholar
Yamada, E. W. & Huzel, N. J. (1988). The calcium-binding ATPase inhibitor protein from bovine heart mitochondria. Purification and properties. Journal of Biological Chemistry 263, 1149811503.CrossRefGoogle Scholar
Yamada, E. W., Shiffman, F. H. & Huzel, N. J. (1980). Ca2+ -regulated release of an ATPase inhibitor protein from submitochondrial particles derived from skeletal muscles of the rat. Journal of Biological Chemistry 255, 267273.CrossRefGoogle ScholarPubMed