Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T16:06:28.113Z Has data issue: false hasContentIssue false

Impact of disease on markers of micronutrient status

Published online by Cambridge University Press:  18 April 2008

David I. Thurnham
Affiliation:
Human Nutrition Research Group, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Assessment of nutritional status in disease and other trauma’
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Adelekan, D. A., Adeodu, O. O. & Thurnham, D. I. (1997). Comparative effects of malaria and malnutrition on plasma concentrations of antioxidant micronutrients in children. Annals of Tropical Paediatrics (In the Press).Google Scholar
Aggett, P. J. & Favier, A. (1993). Zinc. International Journal of Vitamin and Nutrition Research 63, 301307.Google Scholar
Areekul, S. (1988). Transcapillary escape rate and capillary permeability to albumin in patients with Plasmodium falciparum. Annals of Tropical Medicine and Parasitology 82, 135140.Google Scholar
Arthur, J. R. & Beckett, G. J. (1994). New metabolic roles for selenium. Proceedings of the Nutrition Society 53, 615624.Google Scholar
Bamji, M. S., Bhaskaram, P. & Jacob, C. M. (1987). Urinary riboflavin excretion and erythrocyte glutathione reductase activity in pre-school children suffering from upper respiratory tract infections and measles. Annals of Nutrition and Metabolism 31, 191196.CrossRefGoogle ScholarPubMed
Bates, C. J., Prentice, A. M., Paul, A. A., Sutcliffe, B. A., Watkinson, M. & Whitehead, M. (1981). Riboflavin status in Gambian pregnant and lactating women and its implications for recommended dietary allowances. American Journal of Clinical Nutrition 34, 928935.CrossRefGoogle ScholarPubMed
Bates, C. J., Prentice, A. M., Paul, A. A. & Whitehead, R. G. (1982). Seasonal variations in ascorbic acid status and breast milk ascorbic acid levels in rural Gambian women in relation to dietary intake. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 341347.CrossRefGoogle ScholarPubMed
Bates, C. J., Prentice, A. M., Prentice, A., Lamb, W. H. & Whitehead, R. G. (1983). The effect of vitamin C supplementation on lactating women in Keneba, a West African rural community. International Journal of Vitamin and Nutrition Research 53, 6876.Google Scholar
Beare, S. & Steward, W. P. (1996). Plasma free iron and chemotherapy toxicity. Lancet 347, 342343.CrossRefGoogle ScholarPubMed
Brin, M. (1964). Erythrocyte as a biopsy tissue for functional evaluation of thiamine adequacy. Journal of the American Medical Association 187, 762766.Google ScholarPubMed
Buffinton, G. D., Cowden, W. B., Hunt, N. H. & Clark, I. A. (1986). Bleomycin-detectable iron in plasma from Plasmodium vinkei vinkei-infected mice. FEBS Letters 195, 6567.Google Scholar
Carlier, C., Coste, J., Etchepare, M., Amedee-Manesme, O. (1992). Conjunctival impression cytology with transfer as a field-applicable indicator of vitamin A status for mass screening. International Journal of Epidemiology 21, 373380.Google Scholar
Carlier, C., Moulia-Pelat, J. P., Ceccon, J. F., Mourey, M. S., Malvy, D., Fall, M., Diaye, M. N., Amedee-Manesme, O. (1991). Prevalence of malnutrition and vitamin A deficiency in the Diurbel, Fatick and Kaolack regions of Senegal: a controlled study. American Journal of Clinical Nutrition 53, 7477.Google Scholar
Chevion, M., Jiang, Y., Har-El, R., Berenshtein, E., Uretzky, G. & Kitrossky, N. (1993). Copper and iron are mobilized following myocardial ischemia: Possible predictive criteria for tissue injury. Proceedings of the National Academy of Sciences USA 90, 11021106.Google Scholar
Chow, C. K. (1976). Biochemical responses in lungs of ozone-tolerant rats. Nature 260, 721722.CrossRefGoogle ScholarPubMed
Chowdhury, S., Kumar, R., Ganguly, N. K., Kumar, L., Nain, C. K. & Walia, B. N. S. (1996). Conjunctival impression cytology with transfer (CICT) to detect pre-clinical vitamin A deficiency among slum children in India. British Journal of Nutrition 75, 785790.Google Scholar
Connett, J. E., Kuller, L. H., Kjelsberg, M. O., Polk, B. F., Collins, G., Rider, A. & Hulley, S. B. (1989). Relationship between carotenoids and cancer. The multiple risk factor intervention trial (MRFIT) study. Cancer 64, 126134.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Das, B. S., Thurnham, D. I. & Das, D. B. (1996). Plasma α-tocopherol, retinol and carotenoids in children with falciparum malaria. American Journal of Clinical Nutrition 64, 94100.CrossRefGoogle ScholarPubMed
Dickson, P. W., Hewlett, G. J. & Schreiber, G. (1982). Metabolism of prealbumin and changes induced by acute inflammation. European Journal of Biochemistry 129, 289293.Google Scholar
Du Bois, E. F. (1948). Fever and the Regulation of Body Temperature Springfield IL: Charles C. Thomas.Google Scholar
Filteau, S. M., Morris, S. S., Abbott, R. A., Tomkins, A. M., Kirkwood, B. R., Arthur, P., Ross, D. A., Gyapong, J. O. & Raynes, J. G. (1993). Influence of morbidity on serum retinol of children in a community-based study in northern Ghana. American Journal of Clinical Nutrition 58, 192197.CrossRefGoogle Scholar
Finglas, P. M. (1993). Thiamin. International Journal of Vitamin and Nutrition Research 63, 270274.Google Scholar
Gadomski, A. M., Kjolhede, C. L., Wittpenn, J., Rosas, A. R. & Forman, M. R. (1989). Conjunctival impression cytology (CIC) to detect sub-clinical vitamin A deficiency: comparison of CIC with biochemical assessments. American Journal of Clinical Nutrition 49, 495500.Google Scholar
Gey, K. F., Puska, P., Jordan, P. & Moser, U. K. (1991). Inverse correlation between plasma vitamin E and mortality from ischemic heart disease in cross-cultural epidemiology. American Journal of Clinical Nutrition 53, 326S334S.CrossRefGoogle ScholarPubMed
Ghosh, S. K., Yadav, R. S., Das, B. S. & Sharma, V. P. (1995). Influence of nutritional and haemoglobin status on malaria infection in children. Indian Journal of Paediatrics 62, 321326.Google Scholar
Gillum, R. F. & Makuc, D. M. (1992). Serum albumin, coronary heart disease, and death. American Heart Journal 123, 507513.Google Scholar
Gosling, P., Andrews, D. H. & Chesner, I. M. (1991). Effect of anti-inflammatory drugs on urinary microalbumin excretion. Lancet 337, 855.Google Scholar
Graham, N. M. H., Sorensen, D., Odaka, N., Brookmeyer, R., Chan, D., Willett, W. C., Morris, J. S. & Saah, A. J. (1991). Relationship of serum copper and zinc levels to HIV-1 seropositivity and progression to AIDS. Journal of Acquired Immune Deficiency Syndromes 4, 976980.Google Scholar
Halliwell, B., Aruorna, O. I., Mufti, G. & Bomford, A. (1988). Bleomycin-detectable iron in serum from leukaemic patients before and after chemotherapy. FEBS Letters 241, 202204.Google Scholar
Herbaczynska-Cedro, K., Klosiewicz-Wasek, B., Cedro, K., Wasek, W., Panczenko-Kresowska, B. & Wartanowicz, M. (1995). Supplementation with vitamin C and vitamin E suppresses leukocyte oxygen free radical production in patients with myocardial infarction. European Heart Journal 16, 10441049.Google Scholar
Herbert, V., Shaw, S. & Jayatilleke, E. (1996). Vitamin C-driven free radical generation from iron. Journal of Nutrition 126, 1213S1220S.Google Scholar
Hume, R. & Weyers, E. (1973). Changes in leukocyte ascorbic acid during the common cold. Scottish Medical Journal 18, 37.CrossRefGoogle ScholarPubMed
Interdepartmental Committee on Nutrition for National Defense (1963). Manual for Nutrition Surveys: Interdepartmental Committee on Nutrition for National Defense, 2nd ed. Washington, DC: US Government Printing Office.Google Scholar
Irvin, T. T., Chattopadhyay, K. & Smythe, A. (1978). Ascorbic acid requirements in postoperative patients. Surgery, Gynaecology and Obstetrics 147, 4955.Google Scholar
Kallner, A. B., Hartmann, D. & Hornig, D. H. (1981). On the requirements of ascorbic acid in man: steady state turnover and body pool in smokers. American Journal of Clinical Nutrition 34, 13471355.Google Scholar
Kanai, M., Raz, A. & Goodman, D. S. (1968). Retinol binding protein: the transport protein for vitamin A in human plasma. Journal of Clinical Investigations 47, 20252044.Google Scholar
Koj, A. (1974). Acute phase reactants: their synthesis, turnover and biological significance. In Structure and Function of Plasma Proteins, pp. 73125 [Allison, A. C., editors]. London: Plenum Press.CrossRefGoogle Scholar
Kuller, L. H., Eichner, J. E., Orchard, T. J., Grandits, G. A., McCallum, L. & Tracy, R. P. (1991). The relation between serum albumin levels and risk of coronary heart disease in the Multiple Risk Factor Intervention Trial. American Journal of Epidemiology 134, 12661277.CrossRefGoogle ScholarPubMed
Macdonald, H., Stamford, S. & McCarthy, H. D. (1993). Acute effect of peripheral interleukin-1β administration on macronutrient selection in the rat. Proceedings of the Nutrition Society 52, 358A.Google Scholar
Moser, U. & Weber, F. (1984). Uptake of ascorbic acid by human granulocytes. International Journal of Vitamin and Nutrition Research 54, 4753.Google Scholar
Natadisastra, G., Wittpenn, J. R., Muhilal West, K. P., Mele, L. & Sommer, A. (1988). Impression cytology: a practical index of vitamin A status. American Journal of Clinical Nutrition 48, 695701.Google Scholar
Nathanail, L. & Powers, H. J. (1992). Vitamin A status of young Gambian children: biochemical evaluation and conjunctival impression cytology. Annals of Tropical Paediatrics 12, 6773.Google Scholar
Olson, J. A. (1984). Serum levels of vitamin A and carotenoids as reflectors of nutritional status. Journal of the National Cancer Institute 73, 14391444.Google Scholar
Phillips, A., Shaper, A. G. & Whincup, P. H. (1989). Association between serum albumin and mortality from cardiovascular disease, cancer and other causes Lancet ii, 14341436.CrossRefGoogle Scholar
Platt, B. S. (1958). Epidemiology and clinical features of endemic beriberi. Proceedings of a Conference on Beriberi, Endemic Goitre and Hypervitaminosis A. Proceedings of the Federation of American Societies of Experimental Biology 17, Suppl. 2, 320.Google Scholar
Ramsden, D. B., Prince, H. P., Burr, W. A., Bradwell, A. R., Black, E. G., Evans, A. E. & Hoffenberg, R. (1978). The inter-relationship of thyroid hormones, vitamin A and their binding proteins following acute stress. Clinical Endocrinology 8, 109122.Google Scholar
Reddy, V., Bhaskaram, P., Raghuramulu, N., Milton, R. C., Rao, V., Madhusudan, J. & Radha Krishna, K. V. (1986). Relationship between measles, malnutrition, and blindness: a prospective study in Indian children. American Journal of Clinical Nutrition 44, 924930.Google Scholar
Riemersma, R. A., Wood, D. A., Macintyre, C. C. A., Elton, R. A., Gey, K. F. & Oliver, M. A. (1991). Risk of angina pectoris and plasma concentrations of vitamins A, C, and E and carotene. Lancet 337, 15.CrossRefGoogle Scholar
Rosales, F. J., Ritter, S. J., Zolfaghari, R., Smith, J. E. & Ross, A. C. (1996). The mechanism of inflammation-induced hyporetinemia. Virtual Elimination of Vitamin A Deficiency: Obstacles and Solutions for the Year 2000, Report of the XVII International Vitamin A Consultative Group, pp. 98 Abstr. Washington, D. C.: IVACG Secretariat.Google Scholar
Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G. & Hoekstra, W. G. (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 588590.Google Scholar
Sandberg, T., Cooper, E. H., Lidin-Janson, G. & Yu, H. (1985). Fever and proximal tubular function in acute pyelonephritis. Nephron 41, 3944.CrossRefGoogle ScholarPubMed
Sauberlich, H. E., Skala, J. H. & Dowdy, R. P. (1974). Laboratory Tests for the Assessment of Nutritional Status, pp. 1136 Boca Raton, Florida: CRC Press Inc..Google Scholar
Shearman, C. P. & Gosling, P. (1988). Microalbuminaemia and vascular permeability. Lancet ii, 906907.Google Scholar
Sipe, J. D. (1985). Cellular and humoral components of the early inflammatory reaction. In The Acute Phase Response to Injury and Infection, pp. 321 [Gordon, A. H. and Koj, A., editors]. London: Elsevier.Google Scholar
Stephens, N. G., Parsons, A., Schofield, P. M., Kelly, F., Cheeseman, K. & Mitchinson, M. J. (1996). Randomised control trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 347, 781786.Google Scholar
Stephensen, C. B., Alvarez, J. O., Kohatsu, J., Hardmeier, R., Kennedy, J. I. Jr & Gammon, R. B. Jr (1994). Vitamin A is excreted in the urine during acute infection. American Journal of Clinical Nutrition 60, 388392.Google Scholar
Stolzfus, R. J., Miller, K. W., Hakimi, M. & Rasmussen, K. M. (1993). Conjunctival impression cytology as an indicator of vitamin A status in lactating Indonesian women. American Journal of Clinical Nutrition 58, 167173.Google Scholar
Thurnham, D. I. (1994). β-Carotene, are we misreading the signals in risk groups? Some analogies with vitamin C. Proceedings of the Nutrition Society 53, 557569.CrossRefGoogle ScholarPubMed
Thumham, D. I. & Singkamani, R. (1991). The acute phase response and vitamin A status in malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 85, 194199.Google Scholar
Thurnham, D. I., Singkamani, R., Kaewichit, R. & Wongworapat, K. (1990). Influence of malaria infection on peroxyl-radical trapping capacity in plasma from rural and urban Thai adults. British Journal of Nutrition 64, 257271.Google Scholar
Thurnham, D. I., Williams, N. R., Evans, A. E., Cambou, J. P. & Howard, A. N. (1994). Plasma antioxidant nutrients in Belfast and Toulouse. Proceedings of the Nutrition Society 53, 261A.Google Scholar
Tillotson, J. A. & Baker, E. M. (1972). An enzymatic measurement of the riboflavin status in man. American Journal of Clinical Nutrition 25, 425431.Google Scholar
Vallance, S. (1986). Platelets, leukocytes and buffy layer vitamin C after surgery. Human Nutrition: Clinical Nutrition 40C, 3541.Google Scholar
Wittpenn, J. R., Scheffer, C. G., Tseng, M. D. & Sommer, A. (1986). Detection of early xerophthalmia by impression cytology. Archives of Ophthalmology 104, 237239.CrossRefGoogle ScholarPubMed
World Health Organization (1990). Severe and complicated malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, Suppl. 2 165.CrossRefGoogle Scholar
Yarnell, J. W. G., Baker, I. A., Sweetnam, P. M., Bainton, D., O'Brien, J. R., Whitehead, P. J. & Elwood, P. C. (1991). Fibrinogen, viscosity, and white blood cell count are major risk factors for ischaemic heart disease. The Caerphilly and Speedwell collaborative heart disease studies. Circulation 83, 836844.Google Scholar